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CHAPTER 1

EXECUTIVE INFORMATION




EXECUTIVE SUMMARY

The mission requirements for the performance of aerodynamic tests
on a delta wing planform posed some very unique problems, these included
aerodynamic interference, structural support, data acquisition and
transmission instrumentation, aircraft stability and control, and
propulsion system implementation. However, since the overall integrity of
the aircraft is of primary importance the preliminary design work
outlined in this document was performed in order to arrive at a
fundamentally solid design suitable for further development. This
specifications of this design is summarized in Table 1.1.

The proposed aircraft is a test bed for a delta wing planform model
used in aerodynamic testing. Presently, the overall aerodynamic
configuration of the proposed aircraft incorporates twin tail booms, a low
horizontal tail, twin vertical tails, a relatively large fuselage, and a low-
mounted, rectangular-planform wing (see Figure 1.1). With the exception
of the twin tail booms, which are the result of concerns over the
dissipation of the vortices shed from the delta wing model, all of the
configurational components are relatively conventional.

This aircraft is uniquely suited for the acquisition of aerodynamic
data from a delta wing planform model because it was design for this
purpose. The data acquisition system incorporated in this design has the
advantage of being extremely fast. It can read 100 pressure ports
virtually simultaneously! During each test flight the test engineer will be
able to test any of 20 angles of attack in the Reynold's number range of
550,000 to 1,650,000 and 28 tests are possible during each flight due to
an average flight duration of 30 minutes.

This aircraft will be catapult launched so as to expend minimal fuel
and also to allow for an extremely short take-off distance. Once in the air
the aircraft will be manually controlled until the test altitude is reached,
at which time control will be transferred to a computer-based, automatic
control system. This will allow for the standardization of the data
acquisition procedure. As a safety feature the test engineer (or
technician) always reserves the right to override the automatic system
and resume manual control. After the flight (average duration of 30

1-1



minutes) the proposed aircraft will land on the deployed spring-loaded
landing gear.

The propulsion system proposed for this design utilizes a ducted fan
unit housed in the rear of the fuselage. This system was chosen and
developed because of concerns over the quality of flow over the test
model. By removing flow from the propulsion unit from the upper surface
of the aircraft (wings, forward end of fuselage, rear end of fuselage, etc.),
good flow quality should be ensured.

The overall structural integrity of the aircraft is quite sound. The
results of the preliminary design studies revealed that conventional,
light-weight, low cost materials could be utilized for the fabrication of
this aircraft. Hence, the entire aircraft will be constructed of balsa,
spruce, and a shear carrying thin plastic covering (e.g. Monokote™).

The aerodynamic integrity of the aircraft is also quite sound.
Because of the twin tail boom configuration, potentially disrupted flow
from the test model will not be allowed to impinge upon the tail control
surfaces. Also, the model will be mounted in a region above the fuselage
out of the boundary layer.

From a stability and control point of view this aircraft is also quite
attractive. Due to the placement and size of the tail surfaces stability is
assured, while the controllability of the aircraft remains intact. Also, due
to the placement of the model above and slightly aft of the aircraft center
of gravity the pitching moment created by the lift and drag on the model
will work to cancel each other resulting a minimal net pitching moment.

Although this aircraft was design as a sort of "work-horse" aircraft,
it still boasts some good performance characteristics. Since this type of
data acquisition can only be accomplished in flight, a typical flight
duration (30 minutes) is most appealing. The proposed aircraft is also able
to climb efficiently expending minimal fuel. Finally, the flight ceiling
allows for a diverse testing environment.

The proposed aircraft design, which evolved from a team concept
selection study, seems to be fundamentally solid. This aircraft utilizes
some relatively common aircraft technology at this stage in the design
process, but could be easily adapted to incorporate more advanced
technologies, especially in the areas of materials and data acquisition.
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TABLE 1.1 SUMMARY OF SPECIFICATIONS

Overall Dimensions

a. Total Weight........ccccovvvriiiiiiiiinnnns 25.0 pounds (with fuel)

b. Dry Weight.......ccocooiiiiniiiiiiiiinn 18.2 pounds

c. Aircraft Width..................... 14 feet

d. Aircraft Length.....cc...oiiiii 5.22 feet

e. Aircraft Height.....................cco 1.33 feet
Aerodynamics

a. Wing Airfoil........ooooeniiiiiiii NACA 4415

b. Wing Span.......c.ocueevevrecrenicniicnnen 14 feet

C. Wing Chord.........ccoccvcecrriniiiiiicieeenn 1 foot

d. Wing Area........c.cccemiieinininniinieneinn, 14 square feet

e. Aspect Ratio........ccccevericnninininninnnn. 14

Propulsion System

A TYPC.eoinreeeeee et Single ducted fan

D, POWEN......oeeeeeeeeeee e 5 horsepower

c. Fuel Capacity......cccccoeveviinrecicnininnn, 1.3 pounds

d. Specific Fuel Consumption.............. 0.75 ounces/minute-SBhP

Performance

a. Range.........ccooeverriiicccncccie e 224 5 miles

b. Endurance.........ccceeeceeiiiiniceiiieeecci 6.7 hours

C. Ceiling....coooie 25000 feet (absolute)
23350 feet (service)

d. Maximum Rate of Climb.................... 42.09 feet/second

Launch and Retrieval
a. Launch System...........cccovrniniiininne Catapult
b. Landing System........c.cooceeeiiiiiinnnns Spring-loaded Gear



VI. Data Acquisition System
a. 100 pressure ports

b. 2 inclinometers

c. 1 RCT-3 transmitter

d. 1 RCRI-1C receiver

e. 1 RTEI encoder

f. 1 RTDI decoder

g. 1 RTI1 telemetry interface

h. 10 Tattletale Mode! 5 data acquisition systems

i. 120 pressure tubes

j. 1 yaw indicator

k. 1 heading indicator

Vil. Materials

A WING.oo et Spruce/Balsa/Monokote™
b. Tail BOOMS.....ccoccovveeiieiercereccceene Spruce

C. Fuselage.........ccoovveviviiiiinininnene Spruce/Balsa

d. Tail Surfaces........c.ccccoeviiieiin, Spruce/Balsa/Monokote™

Vill. Loadings

a. Overall...........cooveveeviecirencn, 29
B. WING. oo 4.08 pounds/square foot

IX. Estimated CoOSt.......cooveeeeeeeeeeeeiiieeeeeeeeereneee s e eeeaeenne $15,260.00
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CHAPTER 2

MISSION DEFINITION




THE DELTA MONSTER MISSION

To eliminate the problems of wall interference, free stream
turbulence, and the difficulty of achieving dynamic similarity between the
test and actual flight aircraft that are associated with aerodynamic
testing in wind tunnels, the concept of the remotely piloted vehicle (RPV)
as a flying test bed was pursued. The design of a remotely piloted vehicle
which can perform a basic aerodynamic study on a delta wing was the
main objective for the Green mission - the Delta Monster. Since sweep
angle has a significant influence on the performance of the delta wing
sweep angles of greater than 45 degrees were to be considered for this
mission. The constraints on testing dictated that the delta wing was to
be capable of attaining angles of attack of +40 degrees over a Reynold's
number range of 40,000 to 1,000,000. To perform similar aerodynamic
studies to those performed in the wind tunnel, the delta wing would need
to be highly instrumented. Instrumentation to study the formation and
location of the leading edge vortex was the major concern for the mission,
however, an attempt at flow field visualization would also be feasible.
Other measurement requirements include airspeed, angle of attack,
altitude, rate of climb, and the control surface position to maintain the
integrity of the systems described.

The proposed RPV was also subject to other design constraints.
First, all testing of the RPV was to be accomplished within the line-of-
sight of the test pilot. Secondly, the takeoff and landing was to be
accomplished in a circular area of 150 foot radius with a 50 foot obstacle
clearance. Finally, the RPV was to be fully self-contained and capable of
being assembled and launched in 30 minutes by two people. These
requirements have been summarized in Table 2.1.

The proposed Delta Monster will incorporate the capabilities to
achieve the above stated goals. It will be catapulted using a 20 foot
launch system which will accelerate the aircraft to 50 ft/s in under 1
second (a 2g acceleration). Since a majority of the flight will be straight
and level, 2g's (during launch) was considered to be the maximum loading
on the Monster . The primary test altitude will be 800 feet and the RPV
will be manually flown to this altitude. To initiate the testing sequence,
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the pilot will position the Delta Monster at a specified starting position
in the test loop and switch to an automatic control system. This system,
composed of hundreds of sensors, several gyroscopic position indicators,
and various other instruments, will then stabilize the velocity of the RPV,
maintain the proper angle of the delta wing, and fly straight and level for
30 seconds. Since the initial 15 seconds of steady, level flight will be
used for velocity and angle of attack adjustments, the actual flight data
on the delta wing will be taken for only half of the 30 second straight
flight time . The course will be an oval "race" course with a minimum
length of 3000 ft (0.568 miles) at the minimum testing velocity of 50
ft/s, and a maximum length of 9000 ft (1.7 miles) at 150 ft/s. Test data
will be collected from the delta wing and other instruments during the
straight portions of the course while maintaining the delta wing at a
constant angle of attack. However, during each subsequent test leg the
velocity is increased by 5 ft/s. One hundred pressure ports will be
controlled by the control system and data collection will begin when the
flight conditions have stabilized. Allowing for the full minute for each of
the straight legs, and 30 seconds for each turn around, the total flight
duration will be approximately thirty minutes. The landing will be
accomplished with remotely activated, pop-out, tripod landing gear. The
flight will then be repeated after downloading the information from the
onboard computers, performing delta wing adjustments, and refueling.
This allows for several tests on a good day.

The design goal of performing basic aerodynamic studies of the flow
over the delta wing is accomplished using the 100 pressure ports on the
wing. The Delta Monster is instrumented to sweep through delta wing
angles of attack while maintaining test velocity. Using a delta wing root
chord of ten inches, the Reynold's number range specified from the onset
of the mission was determined to be unrealistic. The range that can be
tested with the Delta Monster was narrowed to 350,000 to 1,000,000.
Finally, the ease with which the models can be interchanged makes the
design compatible with wind tunnel testing.
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THE DELTA MONSTER
MISSION REQUIREMENTS

DESIGN GOAL -

The use of a remotely piloted vehicle for the collection
of aerodynamic data at low Reynold's numbers for a low aspect
ratio delta wing.

OBJECTIVES -

« Perform basic aerodynamic studies on a delta wing
with a sweep angle greater than 45 degrees.

- Perform these studies at various angles of attack and
Reynold's numbers:

Angles 0 to 40° Reynoid's 350,000 to
Number 1,000,000

 Instrument the delta wing to determine the primary
leading edge vortex formation and location, using pressure
measurements and/or flow visualization.

« Provide an data acquisition system to coliect all
necessary data including airspeed, angle of attack, etc.

Table 2.1
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CONCEPT SELECTION STUDY

Since the mission definition for the proposed aircraft required the
capability to perform aerodynamic tests on deita wing planforms, a delta
wing surface needed to be incorporated into the design. The selection of
the final aerodynamic configurational concept was accomplished based on
three primary competing concepts. These concepts were 1) a main delta
wing acting as the primary lifting surface and also a test surface, 2) a
delta wing canard acting as a control surface and a test surface, and 3) a
delta wing model mounted on top of a test bed aircraft.

The first concept, which is depicted in sketch form in Figure 3.1,
provided for the testing of an actual main lifting surface with a delta
wing planform. This concept also included a fuselage in order to avoid a
flying wing configuration (with its inherent stability problems) and also
to house the data acquisition and transmission equipment. Also, this
concept included an aft tail assembly comprised of the horizontal and
vertical tail surfaces (stabilizers and control surfaces) in order to move
the control surfaces off the testing surface thereby eliminating any
abrupt discontinuities on this surface. This proposed aircraft concept
would launch with the aid of a catapult and glide to a belly landing upon
completion of its flight.

Unfortunately, there were some concerns with the overall integrity
of the first concept. First, due to the main delta wing planform, the
aircraft weight would be high. Secondly, according to the mission
definition, this aircraft would need to fly at high angles of attack, which,
with a main delta wing, would necessitate the use of an extremely
powerful propulsion system. Thirdly, because the leading edge vortices on
a delta wing planform are comprised of violently swirling air cones which
break down into turbulent flow and drift aft off of the main wing, it would
be possible for the tail surfaces to have been in regions of disrupted flow.
This condition could have possibly led to loss of control power. Lastly,
since high angles of attack needed to be tested, this configuration would
have needed to be in a climb while taking data. Because the ambient
conditions (temperature, density, and static pressure) vary in the
atmosphere with altitude they would have been changing during the data

3-1



= =7

/
1
1

— N N \lj A 4
FIGURE 3.1
CONCERT NO Z PNTAIY DELTARA WING -
— |
= Lo

FIGURE 3.2

T T CONCEPT NO.2  CANARD DELTA W/NG



acquisition. This would have produced less than optimum data and
eliminated the possible comparison with existing wind tunnel data.

The second competing concept, depicted in sketch form in Figure 3.2,
provided for the testing of a delta wing surface which also served as a
control surface. This concept allowed for a weight savings due to the dual
purpose delta wing surface (one surface instead of two). Also, since the
canard is a forward mounted surface, the freestream would be assumed to
be somewhat free from disruption. The concept also included a tapered
main delta wing with an elevator, ailerons, twin vertical stabilizers with
rudders, and a twin turbo-prop propulsion system.

Again, there were disadvantages associated with this conceptual
configuration. First, two delta wing surfaces would have provided for
very high weight and drag which would again necessitate the use of an
extremely powerful propulsion system and would also add to the already
high weight. Secondly, the flow into the turbo-prop engines could have
been disrupted providing for a disrupted freestream over the test surface.
Thirdly, the presence of the fuselage between the two halves of the test
surface/canard would have immediately eliminated possible comparisons
with existing wind tunnel data. Fourthly, there would have been an
inherent conflict between the test surface angle of attack needed for
testing and that needed to trim the aircraft. Also, again, the control
surfaces located at the rear of the main wing could possibly have been in
regions of broken flow allowing for the possible loss of control power.
Lastly, the high angle of attack data would have been taken in a climb with
changing ambient conditions which would have provided less than optimum
data.

The third and final competing configurational concept, shown in
sketch form in Figure 3.3, involved a test bed aircraft with a delta wing
model mounted on top near the center of gravity of the aircraft/model
system. This concept featured a twin tail construction in order to provide
space for the leading edge vortices to escape without impinging upon the
tail structure or the control surfaces. Also incorporated into this concept
was a low horizontal tail surface which allowed for this surface to have
seen the freestream even in a climb (no blockage due to the remainder of
the aircraft), a low wing which would have moved the circulation
distribution of the wing away from the test surface, a large fuselage to
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house all of the data acquisition and transmission equipment, a single
ducted fan propulsion unit to remove the possibility of propeller flow near
the test surface, and a tripod mounting support for the test surface which
positioned the model above and slightly aft of the center of gravity of the
aircraft providing for some cancellation of the effects of the lift and drag
produced by the model on the moment about the center of gravity of the
entire system.

This third concept was eventually chosen to be developed further due
primarily to its three major advantages. First, since the tail surfaces and
structures were positioned away from the disrupted flow from the leading
edge vortices, the pilot would always be assured controllability of the
aircraft. Second, the data would be able to be collected in steady, level
flight providing for constant ambient conditions and the best possible
data. Last, because the model was to be mounted on top of a test bed
aircraft and not integrated into the aircraft's primary systems, different
models could be mounted on this test bed and tested.
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AERODYNAMIC DESIGN
DR |

Drag prediction was the primary focus of the aerodynamics group in
the design stage of the aircraft. In order to calculate the drag on the
aircraft a drag polar was found using the drag breakdown method. With
this method the drag contribution of each component of the aircraft was
found and incorporated into the drag polar for the entire vehicle. The drag
breakdown technique is described in Brendel and Nelson?.

The zero lift drag coefficient, or the profile drag coefficient, CDo, is
calculated in the following manner:

CDo = ZCDﬂ; Ar/ S.

The CDx terms are the induced drag coefficients of each component based
on experimental research. Normalizing the calculations for a wing
planform area of 14 square feet the zero lift drag calculation for each
component of the aircraft resulted in:

WING: CDgx = 0.0030
Ag=2S

FUSELAGE:  CDg=0.0024
Ar=0.75xd|

TAIL: CDy = 0.0025
Ag = 2(Sh+Sv)

DELTAWING: CDo =0.006

From this breakdown, a zero lift drag coefficient of 0.0146 was
found. The zero lift drag coefficient for the delta wing test specimen was
calculated using simple flat plate theory for a 45° sweep delta wing
modelled as a triangular flat plate at zero angle of attack. This analysis



was assumed to suffice as a "worst case” delta wing induced drag
coefficient.

A span efficiency factor of e = 0.85 was assumed for the aircraft
based on a data bank of similarly sized aircraft. This leads to an induced
drag coefficient of 0.027 CL2. The resulting drag polar is CD = 0.0146 +
0.027 CL2 (shown in Figure 4.1 ).

This drag polar results in a minimum drag force of 1.12 Ibs. at 50
ft/s and a maximum drag force of 5.61 Ibs. at a velocity of 150 ft/s. These
velocities represent the velocity range of our aircraft.

The drag breakdown technique is advantageous for developing a
preliminary drag estimation in its consideration of each component of the
aircraft and for its relative ease of application to the overall
configuration of the aircraft.

AIRFOI TION

The criteria used for selecting the airfoil for this vehicle are the
following:

1. High ClI

2. High /D

3. Low CDo

4. Low pitching moment

5. Moderately small maximum thickness
6. Suitable shape for modelling

The NACA 44 series airfoils were considered and found to meet the
specified criteria. Two of the airfoils considered adequate for our mission
requirements were the NACA 4412 and the NACA 4415. Both airfoils were
considered for their camber, a rather blunt leading edge, their relatively
flat bottom surfaces, and their section characteristics.

The NACA 4415 was the airfoil eventually selected for our aircraft.
Its heavier weight, due to its large maximum thickness, was necessary
due to landing requirements. Data for the NACA 4412 and the NACA 4415
is represented in Table 4.1:
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Table 4.1

NACA 4412 NACA 4415
o (L=0) -3.8 degrees -4.3 degrees
Cmo -0.093 -0.093
Cla .105 / degree .105 / degree
a.c. 247¢ .245¢
a (Cl max) 14 degrees 15 degrees
Cl max 1.67 1.64
a (stall) 7.5 degrees 8 degrees
maximum thickness 0.12¢c 0.15¢

The coefficients presented here are section coefficients for the
airfoils obtained from Nicolai2. The lift curves as well as the variation of
Cd with CI for the airfoil sections are found in Figures 4.2 & 4.3 (taken
from Anderson3).

WING DESI

The present design calls for a low mounted wing with a span of 14
feet. A dihedral of 8 degrees will be located outboard of the wing-
fuselage juncture. This will provide the necessary roll stability for the
aircraft.

The wing is to be low mounted so that it does not produce an induced
flow field around the delta wing test surface. This aircraft has been
designed to collect aerodynamic data and information concerning the
vortex breakdown on the delta wing test surface. In order to get better
results it is necessary that the flow over the delta wing be uninterrupted.
A high mounted wing would interrupt the flow over the delta wing, thus
the boundary layer and separation at high velocities and high angles of
attack would result in turbulent flow over the delta wing. This would
result in poor results. A low mounted wing, therefore, provides an
undisturbed flow field over the delta wing enabling the design to meet the
necessary mission requirements.
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DELTA WING

A delta wing test surface with a root chord of 10 inches will be
mounted above the fuselage of the aircraft. The design calls for a tripod
mounting system which, by activating a servo changes the angle of attack
of the delta wing. The mission requirements stipulate that an angle of
attack range of 0 to 40 degrees for the delta wing be attainable.

At large angles of attack it is found that large lift coefficients are
generated on the delta wing. At an angle of attack of 25 degrees for a 45°
sweep delta a CL of 1.73 results from the equation:

CL=KPsino cos2a + KV cos a sina

where KP and KV are constants relating to the flow around the delta wing.
For a worst case analysis (delta sweep of 45°) KP and KV are both equal to
3.4. Therefore, at large angles of attack, lift must be "dumped” by the
elevator control surfaces. The elevators therefore needed to be sized to
compensate for this additional lift.

The lift provided by the delta wing also varies with the sweep angle.
A range of sweep angles from 50 to 75 degrees has been proposed for the
test wing. Preliminary studies using the Lin-Air™ program suggest that
the delta wing will provide approximately 1 to 2% of the total lift of the
aircraft at low angles of attack. From this range of sweep angles, the
best sweep angle will be chosen according to constraints proposed in
further studies by the aerodynamics group.

Drag on the delta wing also decreases as the sweep angle is
increased. The lift and drag contributions of the delta wing decrease with
increasing sweep angle partly because of the decreasing planform area of
the delta wing. With a constant root chord, the planform area decreases
as sweep increases.

The delta wing will be mounted near the aircraft's center of gravity
so that it contributes a minimal moment about the center of gravity.
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PROPULSION

DESIGN OBJECTIVE

The purpose of this study was to design and analyze the
performance of a ducted fan. A ducted fan is essentially a multibladed
propeller encased by a shroud. Because very little technical information
on ducted fans was available, a computer program was developed to
perform this analysis.

REASONS FOR T E

The main reason for choosing the ducted fan as a propulsion unit is
that it satisfies mission requirements. Because it is necessary to have a
relatively steady flow over the mounted delta wing, flow acceleration and
flow interference from the propulsion system are not desirable. A ducted
fan satisfies this requirement by taking air and accelerating it through a
duct to produce thrust. Conventional propulsion systems including
propellers, turbofans, and turbojets are not viable alternatives for various
reasons. A propeller would cause an unsteady flow over the delta wing,
while turbofans and turbojets are characterized by excessive weight, fuel
consumption, and thrust.

THEORY OF EAN

One of the main advantages of using a ducted fan instead of a
propeller is size. Because a ducted fan has a small diameter, it must take
a relatively small amount of air and accelerate it quickly to produce
thrust. Because of the low aspect ratio of the fan blades, the induced
flow is considerable. However, the tip losses caused by the induced flow
are negated because of the shroud. Furthermore, the fan must spin at a
high number of revolutions per minute to produce thrust. This causes an
inefficient use of engine power at low velocities ( a similar analogy is
trying to start a car in third gear as opposed to first gear). However, as
the aircraft begins to move faster, the efficiency of the fan increases
(see Figure 5.1). Thus, an aircraft using a ducted fan needs a greater
takeoff distance or a catapult to provide the necessary takeoff
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acceleration.

PROBLEMS WITH ANALYSIS

The biggest problem in analyzing the performance of the ducted fan
is modelling the three dimensional effects which introduce significant
error in the calculations. Instead of using a complex analysis technique
such as cascade flow theory to account for blade interference, a simple
model was used. The absolute angle of attack that each discrete airfoil
section sees is strongly dependent on blade solidity, which is defined as
the ratio of the total fan swept area to the total blade area. Becausse
ducted fans are multibladed and operate at a high RPM setting, blade
interference lowers the available thrust and engine power required.
Furthermore, only a small absolute angle of attack is necessary to produce
a sufficient amount of thrust. The effect of increasing the solidity of the
fan reduces the absolute angle of attack (and therefore the thrust and
power required) by increasing the induced angle of attack. Thus, to
account for blade interference, the fan was modelled as having an infinite
number of blades, with the solidity becoming the ratio of the swept
volume of the blades to the total blade swept area, giving it a value
equivalent to the mean chord of the blade.

MPUTER PROGRA

The computer program that was developed to analyze the design is
given in Appendix 5.1. The program uses a simple blade element model
(see Figure 5.2), and corrects for altitude, compressibility, and the
induced angle of attack using the method described in the previous
section. In the program, the rpm setting is entered and remains a fixed
parameter. The program then goes through the range of flight velocities,
calculating the thrust and power required at each of the nine equidistant
radial stations. From these calculations, the thrust and power
coefficients are plotted as a function of advance ratio. In addition, the
program has as option to print the local section parameters. These are
used to analyze the aerodynamic performance of the blade over the range
of flight velocities. Appendix 5.2 lists the local section parameters for
the final design.
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Velocity diagram Force diogram

FIGURE 5.2

(from ref. 1)
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From the computer program, a blade design was developed for the
ducted fan. For the final design, a NACA 0006 was selected for the
airfoil section. This airfoil provides an excellent lift to drag ratio for the
full range of velocities from blade root to tip. The section lift and drag
coefficients for the NACA 0006 are given in Figures 5.3 and 5.4. |In
addition, the fan has 5 blades and the diameter of the fan is 6 inches. The
hub has a radius of 1 inch, and the blade has a span of 2 inches. The blade
itself is shown in Figure 5.5, and has a linear twist of -20 degrees (40
degree pitch at the root and 20 degree pitch at the tip). The fan unit
operates at a fixed value of 19500 revolutions per minute (325 rev/sec).
The results for this blade design are listed in Table 5.1 (thrust is given in
pounds and power required in horsepower), and thrust and power
coefficient curves are plotted in Figures 5.6 and 5.7.

Because this design did not take into account inlet ram drag,
fuselage interference, or the presence of nondirected flow within the
duct, these results were reduced by a conservative, arbitrary value of
50%, and are given in Table 5.2. Plots of the thrust and power coefficient
curves are given in Figures 5.8 and 5.9. These are the results used in the
performance calculations, and they represent the expected results from an
empirical analysis.

CONCLUSIONS AND RECOMMENDATIONS

This analysis was performed to give estimates of the thrust and
engine power required for a ducted fan unit. Although the results are
relatively accurate (based on the thrust produced and power required by
similar commercial fan units), it is now necessary to either fabricate or
purchase a ducted fan and run empirical tests in a wind tunnel to
substantiate the analytic results produced by this study.
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FIGURE 5.3

(from ref.2)
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FAM SPEED (REV/3EC) = 325. ¢OC

BLADE PiTCH SETTING (DEGREES) = SC. 00C0

ALTTITUDE (FT) = 0. 0QOCGOE+QD

BLald B IMENT wilTH C[N) = C. Z230C0

ANSLYZ IS INCLUDES IMNDUCED FLOW

ADVANCE RATIO THRUST PCWER REQUIRED cT cP EFFICIENCY
0. 307&7 22 4 8.1 1. 42722 1. 74641 0. 25181
0 33814 22. 9 g 2 1. 45747 1. 7746467 0.27766
Q. 3&?23 23. 7 g. 9 1.31030 1. 83259 0. 30434
0. 40CGC0O 24. 3 8 7 1.55164 1. 87616 0. 33081
0. 43077 24. 8 8.8 1.58134 1. 90793 0. 35703
0.456154 29. 1 8 9 1. 60006 1. 92841 0. 38295
C. 45231 25. 2 ?.0 1.60823 1. 93810 0. 40852
C. 2Z3C8 a23s. 2 7.0 1 40629 1. 93744 0. 43347
0. 33385 25. 0 8.9 1. 59447 1. 92686 0. 45836
0. 58462 24.7 8.8 1. 57379 1. 90676 0. 48253
0. 613533 24.2 8.7 1. 54407 1.87751 0. 504609
0. 64615 23. 6 8 5 1. 50592 1. 83946 0. 52899
0. 67672 22. 9 8 3 1. 435973 1. 79295 0. 55112
0. 70769 2.1 81 1. 40590 1.73828 0. 57238
0. 73846 21. 1 7.8 1. 34480 1.67574 0. 59262
0. 7672 20. 0 7.4 1. 274680 1. 60562 0.61170
0. 80000 18. 9 7.1 1. 20226 1.52819 0. 62938
0. 83077 17. 6 &7 1.12152 1.44368 0. 64538
0. 86154 16. 2 6.3 1. 03492 1. 35234 0. 65932
0. 87231 14. 8 5.8 0. 94278 1. 25440 0. 67064
0. 2308 13.3 5.3 0. 84542 1. 150064 0. £7856

TABLE 5.1

. PAGE IS
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0072.
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0074,
0075.
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LIBRARY ‘PLOTLIB’
DIMENSION THRUST(21), POWER(21) TCOEFF(21), PCOEFF (21}, ARJ(21),
+ EFF(21), HPOQWER(21), VvV (21)

[ EAL M

LHR=6

eRiTe(l, +; "ENTER LESIRED FAN RPH

READ(1, #) R

WRITE (1, #) "ENTER FINITE BLADE ELEMENT WIDTH’
RZAD(1, #) DR

HRIE%{i:?EQENTER FLIGHT ALTITUDE (IN FEET) ’
REA i

<0 ITECL, #) "ENTER 1| FOR SIMPLE BLADE ELEMENT MODEL., 2 FOR INDUCED
*LOW EFFECTS ¢

READ(L, #) K

WRITE(1, #) "ENTER BLADE PITCH AT ROOT (DEGREES)
RizAD(1, %) PITCH

WRITE(1, #: "ENTER 1 T0O BYPASS INCREMENTAL PRINT OPTION, 2 TO PRIN
+ INCREMENTAL AMNALYSIS-

READ(1,#) N

PHI=0 0

BETA=0.0

BETAR=0. O

THETA=0. G

ALFHA=0. 0

CL=0.0

CD=0. 0

VR=0. 0O

QINF=0. 0

DL=0. 0

DD=0Q. O

DT=0. 0

RMN=RN/&0. O

RHO=0. 0023769

SHO01=0. 0

PI=3. 141592654
CC=0. 16666647
D=0. 5
A==0, 0035642
RAIR=1716. 0
SIGMaA=2. 0
TEMP=58. 0
G=32. 2
AC=6. 11155
FRBFRHMNHERH T30S H 30 H 3030 33536 35 263036 46 26 3640 3 26 S0 3636
#*STANDARD ATMOSPHERIC MODEL ALTITUDE CORRECTIONS#
AR AR SR Rt 8 L R X R e g ey g
TEMP=TEMP+A#H
TEMP=TEMP+460. 0
5H81=RHD*EXP(—(G*H)/(RAIR*TEMP))
?0020 VINF=50.0,151.0,5.0
J=J+1
T=0.0
G=0. 0
PHI=0.0
PHID=0. 0

DO 10 RR=1.0,3. 0, DR
DRR=DR/12. 0
R=RR/12. 0
C=CC-2. 0#(0. 25#((RR-1. 0)/12. 0) )
BETA=0. 0
I=I+1
PHI=ATAN(VINF/ (2, O#PI#RN#R) )
PHID=PHI#180. O/P1
LR e T T T S TR
# PITCH SETTING #
3 3636 42635 3 3 3 36 38 3634 3+
BETA=PITCH - 10. O#RR
R RS L R R R R,
IF(K. EQ. 1) THEN
ALPHA=BETA-PHID
H RS R I KT BN
#INDUCED FLOW CORRECTICNG#*

Ra{o\"‘}i’i_:‘_‘ E‘:;\:.“IE lS

OF POOR QUALITY



@]

C

Heleolelelole!
IIRINININININIS
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A HUN=O0VDNTBIVN-OIDNGGEDPHGIDNT G ALV OIDIC A RUN-OIONT T LW EYNINIaYS 3 :
loJolelalalalelole]

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
b e e b et 1 b e b e et Bt Bt e et et ek ek b o ok ok e fd e b ek ek ek b ok ot ok b et e b ek b ek ok ek ok pd ot ol o d P b ot ok
QUUUUNAPAPEPRRARRRRRLWULWLWWHNLWWLWNNNUMNINRINOr s st it et et 2 = O OO0 QO OGO

EEE A RELEREEEES LD SR L2 T 0
ELEEIF (K EQ. 2) THEN
BET~R-CEZIA%PI/180.0

TRETA=(EETAR-PHI)/ (1. O+ ((8. O#R#SIN(FPHI) )}/ (0. S#AC#D*#SIGMA) ) )
PHI=PHI+THETA

PHID=PHI#130. O/PI

ALPHA=BETA-PHID

ENDIF

IF(ALPHA LT, =-10.0 . AND. ALPHA .GT. -32.0) THEN

ALPHA=ALPHA+10. O

cL==0 T 34091 AL THA )

ELSEIF (ALPHA LT, 10.0) THEN

CL=. 10ALPHA

ELSEIF(ALPHA LT, 32.0) THEN

ALFHAa=ALPHA-10. O

CL=D.9-( 0340F1:ALPHA)

ELSE

CL=0.0

ENDIF

CD=0. COS+(Q. OQ397#(CL##2))

VR=2. C#FPI#RN=*R/ (COS(PHI))

M=VR/SGRT{Ll. 4#RAIR*TEMP)
S FHRB L L LRSS EF R LR RT R IR SR F R RS
#ISENTROPIC COMPRESSIBILITY CORRECTION#*
IS S A 3 33 635 3 36 3 3 JE I 3

IF(M. GT. 0. 3) THEN

RHO=RHO1/( (1. O+(0 2#M#%2))##2 5)

ENDIF

QGINF=0. S*¥RHO*(VR#+#2)

DL=CL#QINF#C#DR

DD=CD#QINF#C#DR

T=DL#COS(PHI)~-DD#SIN(PHI)
DR=(DL#+SIN(PHI)+DD#COS(PHI) )*R
T=T+DT
Q=G+DQ

IF(N.NE. 2) GO TO 10
IF(I.EQ. 1) THEN

WRITE(IWR, #)
WRITE(IWR, #}°
WRITE(IWR, #) " ~
WRITE(IWR, #) ‘FREESTREAM VELOCITY (FT/SEC) = “/, VINF

WRITE(IWR, #) "’ ‘
ENDIF
3 36 3t 3¢ 3E 36 5 T 26 36 36 3 36 IE 38 34 3 3% 36 36 3 3434 3¢
# INCREMENTAL PRINT OPTION*®
3 348 % 3 36 35 336 3 96 38 36 36 38 36 36 3 336 3 T3 343
IF(I.EQ. 1) THEN
WRITE(IWR, 100)
100 FORMAT(’ “,4X, ‘R’,8X, ‘PHI’, 8
+, DL, 8X, ‘DD, 8X, ‘DT, 8X, ‘DQ
WRITE(IWR, 105)
105 FORMAT(" )

¥3'BETA’:6X,’ALPHA'.6X:'CL’;BX.’CD’.B

ENDIF
WRITE(IWR, 110)R, PHID, BETA, ALPHA, CL.CD, DL, DD, DT, DQ
11C FORMAT(’ ’, 10F10. 3)
10 CONTINUE
ARJ(J)=VINF/ (RN#D)
THRUST (J)=5. O#T
POWER (J)=35. O0# (2. O#P I #RN*Q)
HPOWER (J)}=POWER (J) /350. O
V(J)=VINF
TCOEFF (J)=THRUST(J)/ (RHO1# (RN##2)# (D##4))
PCOEFF(J)=(POWER(J)/(RHO1%# (RN##3)# (D#%5)))
EFF(J)=(TCOEFF (J) /PCOEFF(J) }*#ARJ(J)
20 CONTINUE
WRITE(IWR, %) !
WRITE(IWR, #) ’
WRITEC(IWR, #) ‘
WRITE(IWR, %) ‘
WRITE(IWR, #) ‘
WRITE(IWR, #) ‘"FAN SPEED (REV/SEC) = ‘.RN
WRITE(IWR, #) ’ ‘
WRITE(IWR, #) ‘BLADE PITCH SETTING (DEGREES) = ‘,PITCH
WRITE(IWR, #) !
WRITE(IWR, #) "ALTITUDE (FT) = ‘', H
WRITE(IWR, #) ’ !
WRITE(IWR, #) ‘BLADE ELEMENT WIDTH (IN)} = ‘,DR
WRITE(IWR, #) ‘
IF(K. EQ. 1) THEN , ;
HWRITE(TIWR, ¥) ‘'SIMPLE BLADE ELEMENT MODEL” ‘" LTy
< L ELNEN |
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ELSEIF(K. EQ. 2) THEM

ERITE(IWR.*)' NALYSIS INCLUDES INDUCED FLOW’

= (F

WRITE(IWR, #) 7 ‘

WRITE(IWR, #) ‘

RITE(IWR, 130)

RMAT(’ 7, 1X, ‘ADVANCE RATIO’, 5X, ‘THRUST’, 5X, ‘POWER REGUIRED’, 7X

+CT':12X:'CP';BX:’EFFICICNCY')

WRITE(IWR, #) 7

HRIT%({NS 140Y{ARJ(I). THRUST(I ), HPOWER(I), TCOEFF(I), PCOEFF (1), EF
+1), =1,21)

140 FORMAT(‘ /,F10.5,2F15. 1,3F153. 3)

NP=21

ND=21

N==

IOPT=-111

CaLL TPLACE('UPH’)

CALL TPLOT(IOPT, ARJ, TCOEFF. NP. ND, NF)

CALL TLABCL(’ADVANCE RATIO’, ‘THRUST COEFFICIENT ")

CALL TPLACE(‘LOH’)

caLl TPLDT(IOPT ARJ, PCOQEFF, NP, ND, NF)

CALL TLARBRZL ( ‘ADVANCE RATIC’, 'POWER CCOEFFICIENT')

CaLL TITLE(’THEDRETICAL THRUST AND POWER COEFFICIENTS”)
CALL TPLOT(IOPT » EFF, NP, ND; NF )

Calll TLABEL( VELOCITY (ft/s)’, 'EFFICIENCY’)

CaLL TITLE('EFFICIENCY INCREASE FOR VELQCITY RANGE’)
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FREZSTRIAM VELOTITY (FT/SEC) = 50. 00CO

R DisT BETA ALPHA cL Co DL DD DT jale]
C. 038233 28 53113 40. C0CO0Q 1. 36887 0. 1368°9 0. 00507 0. 32164 0. 01192 0.24383 0.01751
0 10417 35057333 37. SC000 142567 0. 14257 0. 003508 0. 45841 0.01434 0. 36089 0. 02949
9. 12500 33 53442 35 00000 1.41531 0.14155 0. CC508 0. 37580 0. 02066 Q. 44825 Q.04197
0. 14283 21.13429 32. 50000 1. 36371 0. 13657 0. 00307 0. 63382 0. 02333 0. 53035 G. 05073
0. 16&££7 28709225 30. 00000 1. 29074 0. 12907 0. 0G507 0. 67993 0. 02669 0. 58353 0. 05834
0.18750 26.3C1is4 27.50000 1. 19886 0.11989 0. 00506 0. 69261 0. 02922 0. 60794 0. 06245
. 20803 23. 90437 25. 00000 1. 09513 0. 10951 0. 90505 0. &7378 0. 03106 0. 60340 0. 06260
0.22717 21.51722 22. 50000 . 98278 0. 09828 0. 00504 0. 42697 0. 03214 0.37148 0. 05955
C. 23004 17 12524  2G. 00000 0. 8&396 0. 08640 0. 00503 . 0. 556964 0. 03242 0.51555 C. 05330
FREESTREAM VELOCITY (FT/SEC) = 55. 0000
R PHI BETA ALPHA CcL cD DL DD DT o]c]
0 08332 J8. 61112 40. 00000 1. 38E88 0. 13889 0. 00508 0. 29084 0. 01063 0. 22063 0. 01582
0. 10417 346. 03000 37. 50000 1. 47000 0. 14700 0. 00509 0. 42098 0. 01456 0. 33189 0. 02702
0. 12200 33. 52712 35. 00000 1. 47288 0. 14729 0. 00509 0. 53353 0. 01842 0. 43459 0. 03874
0.14383 3L.07.10 32. 50000 1. 428920 0. 14289 0. 003508 0. 66231 0. 02355 0. 53513 0. 05279
0. 15667 28. £4303 30. 00000 1. 35497 0.13550 0. 00507 0. 71294 0. 02669 0. 61289 0. 06087
0. 18750 2&.23915 27. 50000 1.26085 0.12608 0. 00506 0. 72770 0. 02922 0. 63980 0. 06524
0. 20833 23. 84747 25. 00000 1. 15253 0.11525 0. 00505 0. 70852 0. 03106 0. 63547 0. 06560
0.22917 21. 446414 22. 50000 1. 03384 0. 10339 0. 00304 0. 65914 0. 03215 0. 601465 0. 06213
0. 250C0 19. 09257 20. 00000 0. 90743 0. 09074 0. 00503 0. 58471 0. 03243 0. 54194 0. 05547
FREESTREAM VELOCITY (FT/SEC) = &0. 0000
R PHI BETA ALPHA cL cD DL DD DT Da
0. 08333 38 60813 40. 00000 1.39187 0.13919 0. 00308 0. 29144 0. 01063 0. 22112 0.01383
0. 10417 34. 00090 37. 50000 1. 49910 0. 14991 0. 00309 0. 42903 0. 01454 0. 33852 0. 02750
0. 12500 33. 48322 35. 00000 1. 51678 0.151é68 0. 00309 0. 348791 0. 01842 0. 447465 0. 03977
0.14583 31.01986 32. 50000 1.48014 0. 14801 0. 00309 0. 68534 0. 02335 0. 357321 0. 05445
0. 164667 28. 59147 30. 00000 1. 40853 0. 14085 0. 00508 0. 74041 0. 02670 0. 63735 0. 06296
0. 18750 26.18675 27. 50000 1.31325 0. 13132 0. 00507 0. 73731 0. 02923 0. 66668 0. 06758
0.20833 23.79874 25. 00000 1. 201246 0. 12013 0. 00506 0. 73797 0. 03107 0. 66268 0. 06796
0.22917 21.42292 22. 50000 1. 07708 0.10771 0. 00305 0. 68633 0. 032135 0. 62716 0. 06431
0. 25000 19.05626 20. 00000 0. 94374 0. 09437 0. 00504 0. 60787 0. 03243 0. 56397 0. 05728
FREESTREAM VELOCITY (FT/SEC) = 65. 0000
R PHI BETA ALPHA cL cD DL DD DT Da
0. 08333 38. 62089 40. 00000 1. 37911 0. 13791 0. 00508 0. 28891 0. 010463 0. 21909 0.01572
0.10417 35.98624 37. 350000 1. 31374 0.13138 0. 00309 0. 43308 0.01437 0. 34187 0.02774
0. 12500 33. 45225 35. 00000 1.34775 0. 13478 0. 00310 0. 35974 0. 01843 0. 45486 0. 04049
0.14583 30.98017 32. 50000 1.31983 0.15198 0. 003509 0. 70318 0. 02356 Q. 39074 0. 05573
0. 166467 28. 54825 30. 00000 1.4517%5 0. 14517 0. 003508 0. 76254 0. 02670 0. 465707 0. 06465
0. 18750 26. 14368 27. 50000 1. 35632 0. 133463 0. 00507 0. 78161 0. 02923 0. 68876 0. 06949
0. 20833 23.73845 25. 00000 1. 24155 0.12416 0. 00506 0. 76228 0. 03107 0. 68516 0. 06991
0.22917 21.38738 22. 50000 1.11282 0.11126 0. 003505 0. 70864 0. 03215 0. 64813 0. 06409
0.25000 19.02695 20.00000 0. 97305 0. 09731 0. 00304 0. 62655 0. 03244 0.58174 0. 05873
FREESTREAM VELOCITY (FT/SEC) = 70. 0000
R PHI BETA ALPHA cL CD DL DD DT Da
0. 0B333 38. 64814 40. 00000 1.3518646 0.13519 0. 00507 0. 28343 0. 01063 0.21471% 0. 01344
0.10417 35.98520 37. 50000 1. 391480 0.13148 0. 00309 0. 43338 0.01457 0. 34212 0.02775
Q. 12500 33. 433464 35. 00000 1. 56636 Q. 15664 0. 003510 0. 56623 0.01843 0. 46240 0. 04092
0.143583 30. 95140 32. 50000 1. 34840 0. 13484 0. 00310 0.71599 0. 023346 0. 60192 0. 03665
Q. 16647 28. 51506 30. 00Q00 1. 48494 0. 14849 0. 00309 0. 779351 0. 02671 0. 67220 0. 06593
0.18750 26. 10967 27. 30000 1. 39033 0. 13903 G. 00308 0. 80078 0. 02924 Q. 70619 0.07100
0. 20823 23.72638 2935. 00000 1.27362 0. 12736 0. 005064 0. 78142 0. 03108 0. 70305 0.07145
0.22917 21.35931 22. 50000 1. 14069 0.11407 0. 00505 0. 72629 0. 03216 0. 6464469 0.06748
0.25000 19.00446 20. 00000 0. 99554 0. 09955 0. 00504 0. 64087 0. 03244 0. 59538 0. 05984
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FREESTREAM VELLQCITY (FT/SEC) = 75. 0CCC

R P BETA ALPHA cL cD DL DD DT DQ
0. Osl33 38. 62865 40. QQOCC 1. 31133 0. 13113 0. 00507 0.27525 0. 01064 0. 20820 0. 01503
0. 10417 35. 99695 37. 300C0O 1. 5030¢S 0. 13031 Q. 00509 0. 43016 0.01457 Q. 33946 0. 02756
0. 12300 33 42681 395 0QGCO 1.573179 0.13732 Q. 00510 0. 568635 0.01843 0. 46444 0.04108
0. 14383 30.93373 32. 50000 1. 96627 0. 13663 Q. 00510 Q. 72399 0. 02356 0. 60890 0.05722
0. 16647 28.49157 30. 00CCO 1. 50843 0. 15084 0. 00509 0. 79151 0. 02671 0. 68291 0. 064684
0. 13750 26.0844% 27. £00C0 1. 418358 0. 141546 0. 003508 0. 81498 0. 02924 0.71911 0. 07211
0. 20832 23.70231 295. 000CO 129769 G. 12977 0. 00507 0. 79612 0. 03108 0.714647 0. 07260
0.22917 21.33854 22 50000 1. 15146 0. 11615 0. 00505 0. 73932 0. 03217 0. 67693 0. 06852
0. 25000 18. 98844 20. 0C00C 1. 01136 C. 10114 0. 00504 0. 65095 0. 03244 0. 60497 Q. 06062
FREESTREAM VELOCITY (FT/SELC) = 80. 00C0
R PHI BETA ALPHA CL Ch DL . DD DT Da
0. 05335 38.74118 40. COCQC 1.23852 0.12588 0. 00506 Q. 26462 0.01064 0.19974 0.01449
0.10417 34602068 37. 50000 1.47932 0. 14793 0. 00509 0. 42364 0. 01457 0. 33407 0.02718
0.125C0 33 43511 35. 000CO 1. 96882 0. 15688 0. 00510 0. 56714 0. 01843 0. 46315 0. 04098
0.14583  30. 924613 32. 50000 1.57387 ©. 15739 0. 00310 Q. 72739 0. 02356 0.61187 Q. 05746
0. 16667 28.47743 30. 00000 1. 52257 0. 15226 0. 00509 0. 79873 0. 02671 Q. 68935 Q. 06739
0.13750 26. 06775 27. 350000 1. 43225 0. 14323 0. 00508 0. 82437 0. 02923 0. 72766 0. 07285
0. 20333 23. 68600 25. 00000 1.31400 0. 13140 0. 00307 Q. 80594 0. 03109 0. 72336 0. 07338
0. 2291 21.32486 22. 50000 1.17514 0. 11751 0. 00305 0. 74790 0.03217 0. 68500 0. 06920
0.25000 1B. 97931 20. 00000 1. 062069 0. 10207 0. 00504 0. 65689 0. 03244 0. 61063 0. 06108
FREESTREAM VELQOCITY (FT/SEC) = 85. 0000
R PHI BETA ALPHA cL CD DL DD DT DG
0. 08333 38.80455 40. 00000 1. 195495 0.11954 0. 00506 0. 25175 0. 01065 0. 18951 0.01384
0.10417 36. 05556 37. 50000 1. 44444 0. 14444 0. 00508 0. 41402 0. 01457 0. 32614 0. 02661
0.12500 33. 44417 33. 00000 1.55383 0.15538 0. 00310 0. 36192 0.01843 0. 45871 0. 040463
0. 14583 30. 92836 32. 50000 1.971564 0.15716 0. 00510 0. 72640 0. 02356 0.61100 0. 05739
0. 16667 28.47230 3Q. 00000 1. 52770 0.15277 Q. 00309 0. 80135 0. 024671 0. 69169 0. 06739
0. 18750 26.03928 27. 30000 1.44072 0. 14407 Q. 00508 0. 82914 0. 02925 0. 73200 0. 07322
0.20833 23.67723 25. 00000 1. 32277 0. 13228 0. 00307 0.81122 0. 03109 0. 73045 0. 07380
0.22917 21.31808 22. 30000 1.18192 0.11819 0. 00306 0. 73216 0. 03217 Q. 68900 0. 06953
0. 25000 18.97630C 20. 00000 1. 02370 0.10237 0. 00504 0. 65880 0. 03245 0. 61245 0. 06123
FREESTREAM VELOCITY (FT/SEC) = 90. 00C0
R PHI BETA ALPHA cL CcD DL DD DT DQ
0. 08333 38.87761 40. 00000 1. 12239 0. 11224 0. 00505 0. 23685 0. 010&46 0.17770 0. 01308
0.10417 36.10079 37. 30000 1. 39921 0. 13992 0. 00308 0. 40132 0. 01457 0.31383 0. 02587
0. 12300 33.47119 35. 00000 1. 52881 0. 15288 0. 00309 0. 83319 0.01843 0. 43129 0. 04006
0.14583 30.93998 32. 50000 1. 36002 0. 13600 0. 00310 0. 72120 0. 02336 0. 606446 0. 05702
0. 166467 28.47583 30. 00000 1.52417 0. 13242 0. 00309 0. 799335 0. 02671 0. 62008 0. 06745
0. 18750 24.05878 27. 50000 1.44122 0. 14412 Q. 00508 0. 82942 0. 02925 0. 73225 0. 07324
0. 20833 23. 47376 25. 00000 1. 32424 0. 13242 0. 00307 0. 81211 0. 03109 Q. 73127 0. 07387
0.22917 21.31800 22. 50000 1. 18200 0.11820 Q. 00506 0. 73221 0.03217 0. 68904 0. 06954
0. 25000 18. 97944 20. 00000 1. 02056 0. 10206 0. 00304 0. 65681 0. 03244 0. 61055 0. 06107
FREESTREAM VELOCITY (FT/SEC) = 95. 0000
R PHI BETA ALPHA CL cD DL DD DT Da
0. 08333 38. 95928 40. 00000 1. 04072 0. 10407 0. 00304 0. 22012 0. 01067 0. 156446 0.01222
0.10417 36.15956 37. 50000 1. 34444 0. 13444 0. 00507 0. 384634 0. 01437 0. 30334 C. 02497
0. 125C0 33. 50545 35. 00000 1. 49435 0. 14943 0. 00509 0.54119 0. 01843 0. 44106 Q. 03924
0. 14383 30. 96053 32. 30000 1. 33947 0. 13393 0. 00309 0.71198 0. 02336 Q. 59842 0. 05636
0. 15667 28.48769 30. 0C00C 1. 51231 0.15123 0. 00309 0. 79349 0. 02671 0. 68468 0. 06697
0.18730 24&. 065946 27. 50000 1. 43404 0. 14340 0. 00308 0. 82538 0. 02923 Q. 72838 0. 07293
0. 20833 23. 68136 25. 00000 1.31864 0.13186 0. 00307 0. 80874 0. 03109 0. 72815 0. 07360
0.22917 21.32442 22. 50000 1.17558 0.11754 0. 00505 0. 74818 0. 03217 Q. 68526 0. 06922
0.25000 18.9885&6 20. 00000 1.01144 0.10114 0. 00504 0. 65100 0. 03244 0. 60502 0. 06043
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FREESTREAM VELQCITY (FT/SEC) = 100. 000

] FHI BETA ALPHA cL cD DL DD DT DQ
0. 02333 35.04852 40. 00000 0. 95147 0.09515 0. 00504 020175 0. 01068 0. 14995 0. 01128
0.10417 3&.21920%9 37 50000 1. 28091 0. 12809 0. 00307 0. 346848 0. 01458 0. 28882 0. 02392
0. 1230C 33 54298 35. 0CO00 1.45102 0.14510 0. 00508 0. 52598 0.01843 0. 42818 0. 03826
0.134533 30. 98760 32. 50060 1.51040 0.13104 0. 00509 0. 698935 0. 02336 0. 58705 0. 05543
Q. 16&£457  28. 50752 30. 00000 1.492483 0.14925 0. 00509 0.78337 0. 02671 0. 67564 0. 046623
0.13750 26. 08054 27. 50000 1.4:.946 0.14195 0. 00508 0.81717 0. 02925 g.72111 Q. 07229
0. 20833 23. 69280 25. CO00Q 1. 30420 0. 13042 0. 00507 0.80125 0. 03109 0.72121 0. 07301
0. 22917 21. 3371 22. 50000 1146285 0. 114628 0. 00505 0. 74020 0. 03217 0. &7775 0. 06859
0. 23200 19. 00348 20. 00000 0. 955352 0. 09965 0. 00504 0. 464150 0. 03244 Q. 59597 0. 05989
FREESTREAM VELGCITY (FT/SEC) = 105. 000
R PHI BETA ALFHA cL Ch DL DD DT Da
0.08322 39. 14439 40. 00000 0. 85561 0. 08356 Q. 00503 0.18192 0. 01067 0. 13434 0. 01026
0.10417 36&. 290685 37. 50000 1. 20934 0. 12093 0. 00506 0. 34871 0. 01438 0. 27244 0. 02272
0.12500 33. 60041 35. 00000 1. 39939 0. 13994 0. 00508 0. 50786 0. 01843 0.41281 0. 03705
0. 14593 31 02473 32. 50000 1.47327 0. 14733 0. 00509 0. 48227 0. 02355 0. 57252 0. 05423
0. 165667 28. 53495 30. 00000 1. 46502 0. 145650 0. 00509 0. 76933 0. 02670 0. 66312 0. 06516
0. 13730 2&. 10225 27. 50000 1.39775 0. 13978 0. 00508 0. 804946 0. 02924 0. 71000 0.07133
0. 20833 23.71285 25 00000 1.28715 0. 12872 0. 00507 0.78977 0. 03108 0. 710460 0. 07210
0.23917 21.35595 22. 50000 1. 14402 0.11440 0. 00505 0.72838 0. 03217 0. 4&665 0. 06765
0. 25000 19.02404 20. 00000 0. 97596 0. 09760 0. 00504 0. 62840 0. 03244 0. 58350 0. 05888
FREESTREAM VELOCITY (FT/SEC) = 110. 000
R PHI BETA ALPHA cL Ch DL DD DT jac]
0. 08333 39.245%4 40. 00000 0. 75406 0. 07541 0. 00502 0. 146078 0.01071 0.11774 0. 00917
0.10417 36 36951 37. 50000 1. 13049 0.1130%5 0. 00505 0. 32662 0. 01459 0. 25435 0. 02140
0. 12500 33. 65997 35. 00000 1. 34003 0. 13400 Q. 00507 0. 48698 0. 01843 Q. 39312 0. 03566
0.143583 31.07150 32. 50000 1. 42850 0. 14285 0. 00308 0. 66213 0. 02335 0. 55498 0. 05278
Q. 16667 28. 56972 30. 00000 1.43028 0. 14303 0. 00508 0.75155 0. 02670 0. 64727 0. 06381
0.18750 26.13079 27. 50000 1. 36921 0. 13692 0. 00807 0. 786888 0. 02924 0. £9337 0. 07007
0.20833 23.73827 25. 00000 1. 26173 0.12617 0. 00506 0. 77445 0. 03108 0. 69642 0. 07088
0.22917 21.38073 22. 50000 1. 11927 0.11193 0. 00305 0.71284 0. 032146 0. 65206 0. 06642
0. 25000 19.05008 20. 00000 0. 94992 0. 09499 0. 00504 0. 61181 0. 03243 0. 56772 0. 05759
FREESTREAM VELOCITY (FT/SEC) = 115. 000
R PHI BETA ALPHA cL cD DL DD DT jalc]
0. 0B333 39.3%23& 40. 00000 0. 647464 0. 06476 0. 00502 0. 13851 0. 01073 0. 10030 0. 00801
0.10417 36.4349& 37. 30000 1. 04504 0. 10450 0. 00304 0. 30259 0. 01460 0.23470 0. 019995
0. 12500 33.726353 35. 00000 1. 27347 0. 12733 0. 00506 0. 46349 0. 01843 0. 37325 0. 03408
0.14383 31.12347 32. 50000 1. 37633 0. 13745 0. 00308 0. 63871 0. 02335 0. 53460 0. 03108
0. 16667 28.61141 30. 00000 1. 388389 0. 138846 0. 00308 0. 73019 0. 02470 0. 62824 0. 06218
0. 18750 264.146589 27. 50000 1. 33411 0. 13341 Q. 00507 0. 76908 0. 02923 0. 67738 0. 06851
0. 20833 23. 76953 25. 00000 1. 23017 0. 12302 0. 00304 0. 75542 0. 03107 0. 47881 0. 06936
0.22917 21.41119 22. 30000 1. 08881 0. 10888 0. 00305 0. 49370 0. 03216 0. 63408 0. 06489
0.25000 1%.08141 20. 00000 0. 91859 0. 09186 0. 00503 0. 59183 0. 03243 0. 54871 0. 05603
FREESTREAM VELOCITY (FT/SEC) = 120. 000
R PHI BETA ALPHA CL CD DL DD DT Da
0. 08333 39. 46285 40. 00000 0. 537195 0. 05371 0. 00501 0.11524 0. 01073 0.08213 0. 00680
0. 10417 36. 54433 37. 50000 0. 95367 0. 09537 0. 00504 0. 27677 0. 01462 0. 213653 0. 01839
Q. 12560 33. 79976 3S. 00000 1. 20024 0. 12002 0. 00506 0. 43757 0. 01844 0. 35336 0. 03234
0.14533 31.18222 32. 50000 1.31778 0. 13178 0. 00507 0.61217 0. 02335 0.51153 0. 04914
0. 16667 28. 65970 30 00000 1. 34030 0. 13403 0. 00507 0. 70541 0. 02669 0. 60618 0. 06029
0. 18750 26.20729 27. 50000 1.29271 Q. 12927 0. 00507 0. 74571 0. 02923 0. 65615 0. 06666
0.20833 23.80730 25. 00000 1.19270 0.11927 0. 00506 0. 73279 0. 03107 0. 65790 0. 06755
0.22917 21.44717 22. 50000 1. 05283 0. 10528 0. 00304 0. 47108 0. 032135 0. 461285 0. 06309
0. 23000 19.11787 20. 00000 0. 88213 0. 08821 0. 00503 0. 56856 0. 03243 0. 526%8 0. 05421
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FREESTREAM VELOCITY (FT/SECHY = 15G. 000

R PHI BETA ALPHA cL CD DL DD DT jo]e]

0. 08333 40.17590 40 0000Q -0.17590 -0.0173%9 0. 00500 -0.03851 0. 01095 -0.03649 -0.00137
0.10417 37.18635 37. 30000 0. 31365 0. 03137 0. 00300 0. 09253 0.01476 0. 06479 0. 00705
Q. 12500 34.35153 353 00000 0. 64845 0. 06484 0. 00502 Q.23941 0. 01852 0.1872 0. 01880
Q. 14583 31.65489 32 5200C0 0 84511 0. .0g4% 0. 00303 Q. 39638 0. 02338 0. 32503 0. 033246
Q. 16857 29 Q4995  3G. OCO00 0. 93065 0. 09300 0. 00303 0. 49314 Q. 02667 0. 41303 0. 04382
Q. 18730 26. 37253 27. 30000 0. 92735 0. 0927 0. 00503 Q. 53810 0. 02921 0. 46820 Q. 05003
0. 20833 24.14363 23. 00000 0. 85622 0. 08343 0. 00503 0. 528463 Q. 03105 0. 446970 0. 05095
0.22917 21.76826 22. 50000 C. 73174 0. 07317 0. 00502 0. 46829 0. 03213 0. 42298 0. 04664
0.25000 19.43%2C 20. 00000 0. 56480 0. 05648 0. 00501 0. 36529 0. 03242 0. 33348 0. 03803
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WEIGHT AND BALANCE

In order for an aircraft to be controllable, the center of gravity
(cg) must be located in a favorable position. In regular transport planes
the cg can be greatly effected by passengers or cargo placement.
However, for this test vehicle the cg travels only slightly because the
equipment is positioned permanently. Therefore, the only consideration
for cg travel is the consumption of fuel throughout the flight.

The major factor in determining the shape of the fuselage was the
accommodation of the ducted fan unit, while the fuselage size was
determined by the volume of equipment being used. The resulting size of
the fuselage was 36 inches in length with a maximum diameter of 10
inches tapering to six inches. The cg of the fuselage had to be located
between 16 and 20 inches from the forward end in order for the aircraft
to be stable. Since the quarter chord of the wing falls within this range
the equipment was positioned so that the cg of the fuselage was close to
the quarter chord.

The fan and engine were positioned at the rear of the fuselage so that
the propulsion system could exhaust directly out the back. A scoop was
positioned slightly below the fuselage to increase the airflow to the fan
unit, and the throttle servo was located above the engine inside the
fuselage so that it could be easily connected to the engine.

Another system located at the rear of the fuselage was the pressure
measurement system. This system contains two banks of pressure
transducers, one on each side of the fuselage. Since the delta wing was
positioned slightly aft of the ¢cg and above the main wing, having the
pressure transducers at the rear allowed the pressure tubes to be run
directly up the rear struts of the delta wing support structure to the
pressure taps located on the surface of the wing.

The computer system, which consists of the data acquisition
equipment and the communications pack, was located near the center of
the fuselage. Since the data from the pressure banks needed be relayed to
the data acquisition equipment the two systems were placed near each
other to reduce the amount of wiring running through the fuselage.

Finally, the guidance system was located in the forward section of the
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fuselage. Included in this system were two inclinometers, a heading
indicator, and a yaw indicator. Since these components were relatively
heavy they were placed in the forward portion so they could counteract
the weight of the engine in the rear. In addition, there was a battery pack
and a nose wheel located in the forward section (see Figure 6.1).

The remainder of the aircraft weight consisted of the fuel system.
This system was contained in the wings and was to be comprised of two
0.25 gallon tanks.

By using weight estimations for single engine RPVs the weights of the
aircraft components were determined. This analysis resulted in a total
aircraft weight estimate of 28 pounds which was used for all design
calculations.

The weights for each part of the structure were determined by using
the size and density of the material for that section. Since balsa and
spruce (two woods) were found to be sufficiently strong to support the
anticipated loadings the resulting weight of the aircraft was less than
expected. This reduced RPV total weight was 19.5 pounds. Since the
weight varied significantly from the initial estimate the center of gravity
position was altered. The fuselage cg was found to be 21.27 inches from
the forward edge of the fuselage due to the necessary location of the
instrumentation.

With the determined fuel and component weights, the center of gravity
for the RPV was determined to be 24 inches from the forward-most point
of the aircraft. Since the cg should be located near the wing quarter
chord, the allowable cg travel was determined to be from 18 to 20 inches
from the same reference point. Therefore, the cg was at least 4 inches
too far aft. Because the cg would travel as fuel was burned it would
eventually reach 25.3 inches. The only way to compensate for this problem
was to place ballast in the nose of the RPV. Since the initial estimate
was greater than the proposed design weight, ballast could be added in the
nose in order to adjust the center of gravity.

In order to locate the center of gravity at an optimal location (18
inches), 7.06 pounds of ballast was requiréd in the nose. Upon depletion of
the fuel the cg would have traveled 0.1 inches. An alternative was to
locate the cg at 19 inches with a resulting travel of 0.3 inches and 5.5
pounds of ballast in the nose. This results in a favorable design.

6-2



S GRS 6./

/,’

L
'
I \
/ \ ol
Q W< !
~ /
> = / / CECRETL
A TR 1 [\ b\ ﬂ
o | [\ w |\ \
J N | | g 0 \ |
¢ RS W ] , |
2 o [[s 1™ I N\ % |
W al | | Q :
3 X _
q \
J & ,
& \
J A )
S
<
,.,Kz D OER S Vo il ol L
— \ ﬁ
N ] \ |
h X< w <t/ ) "
N , 4 O
\
WIS E =33 3 W
) !
\ & < 1] = L
o J —* 1
2|l = 1 {
N / = _
ogw| / 11y \ <~ Im
Ay \ ~
— A > /8 N
AN | o
ay < M <
Q o B 3
Q —~ 2
S —




CHAPTER 7

STABILITY AND CONTROL




STABILITY AND CONTRO

STABILITY

The first concern in dealing with the proposed data collection
vehicle was to design the aircraft so that it is stable without the
presence of a delta wing.

The main stability mode analyzed for the aircraft was longitudinal
stability. Since many of the physical parameters associated with
longitudinal stability had already been established through other flight
requirements the longitudinal mode was examined with respect to center
of gravity position (xcg) and length from the wing aerodynamic center to
the tail aerodynamic center (lt).

From longitudinal stability it was determined that the aircraft must

have a natural pitch up motion (cmo > 0) and must restore itself to
equilibrium when disturbed (cmy < 0). In order for this to occur with the

current flight configuration a tail length of at least three feet was
required (Figures 7.1 & 7.2). This would insure stability for the entire
range of center of gravity position chosen {(xcg = 0.23c to 0.32 c).

A factor of concern for the vehicle in general was the overall
weight. In order to keep the weight low while maintaining an acceptable
degree of longitudinal stability it was thought that a tail length of around
3.3 feet would be appropriate for a center of gravity position near 0.28c.

With the preliminary estimates made, a series of delta wings were
added to the aircraft to determine their effect on stability and the
feasibility of testing many different wings.

The first thing to note about this analysis is that a cdg of 0.006 was
assumed for all delta wing planforms. This number was calculated for a
delta wing sweep of 45° and since all subsequent calculations are based
on delta wing sweep angles varying from 45° to 75° this was taken as a
valid approximation. The effect of the delta wing cdo on aircraft cmo was
to reduce it from about 0.1 to 0.002; thus, for a sweep angle higher than
45° the aircraft cmp would fall somewhere between these values.

Two parameters which now arose in the stability determination
were the delta wing sweep angle and the position of the delta wing with
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respect to the main wing aerodynamic center. By examining Figure 7.3 it
is evident that for all delta wings chosen the aircraft will be
longitudinally stable.

Two other interesting points should be observed. The first is that as
the delta wing aerodynamic center approaches the vehicle's center of
gravity it has less of an effect on longitudinal stability. The other is that
as the delta wing sweep angle is increased cmg for the entire aircraft is
less varied over a range of delta wing placements (see Table 7.1).

Initial indications are that the aircraft is feasibly longitudinally
stable both with and without the delta wing present. This is important in
the delta wing testing and is discussed under the topic of the delta wing.

Calculation was also done which showed the aircraft was also
directionally stable. A point which needs to be addressed at this time is
roll stability. It is hoped that a wing dihedral of approximately 7° or 8°
will provide sufficient roll control of the vehicle.

CONTROL

As far as primary aircraft control is concerned, both longitudinal
and directional modes were examined. From the aerodynamic parameters
determined an elevator trim angle at cruise was determined. For a cruise
c| of approximately 0.25 this angle was found to be in the range of -0.5°
to -1.0°. These values are reasonable and leave sufficient elevator power
to control the aircraft in non-cruise conditions.

For directional control a rudder control effectiveness on the order of
-0.2 was found. Again this seems to be a reasonable value.

Also noteworthy in the area of control is the aircraft control during
data acquisition. Since the delta wing(s) are to be tested at many angles
of attack over a wide range of flight velocities it was of interest to
determine whether it would be easier to vary flight velocity or delta wing
angle of attack during testing. From Figure 7.4 it can be seen that varying
the delta wing angle of attack over its entire range will produce only a
minor change in angle of attack of the primary wing. However, by varying
flight velocity during the test the primary wing angle of attack will
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change almost 13 times more. Consequently the decision was made that
the delta wing angle will be varied in flight and the fight velocity will be
held constant.
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Table 7.1

Delta Wing Delta Sweep Delta Sweep Delta Sweep Delta Sweep Delta Sweep Delta Sweep

ac position 45° 50° 55° 60° 65° 70°

(xdac)*c Cma Cma Cma Cma Cma Cma
-0.2 -0.112695 -0.400695 -0.573495 -0.717495 -0.919085 -1.120695
-0.15 -0.316695 -0.574695 -0.729495 -0.858495 -1.039095 -1.219695
-0.1 -0.520695 -0.748695 -0.885495 -0.999495 -1.159095 -1.318695
-0.05 -0.724695 -0.922695 -1.041495 -1.140495 -1.279095 -1.417685
0 -0.928695 -1.096695 -1.197495 -1.281495 -1.399095 -1.516695
0.05 -1.132695 -1.270695 -1.353495 -1.422495 -1.519095 -1.615695
0.1 -1.336695 -1.444695 -1.509495 -1.563495 -1.639095 -1.714695
0.15 -1.540695 -1.618695 -1.665495 -1.704495 -1.759095 -1.813695
0.2 -1.744695 -1.792695 -1.821495 -1.845495 -1.878095 -1.912695
0.25 -1.948695 -1.966695 -1.977495 -1.986495 -1.999095 -2.011685
0.26 -1.989495 -2.001485 -2.008695 -2.014695 -2.023095 -2.031495
0.27 -2.030295 -2.036295 -2.039895 -2.042895 -2.0470895 -2.051295
0.28 -2.071095 -2.071095 -2.071095 -2.071095 -2.071095 -2.071095
0.29 -2.111895 -2.105895 -2.102295 -2.099295 -2.095095 -2.090895
0.3 -2.152695 -2.140695 -2.133495 -2.127495 -2.119095 -2.110695
0.31 -2.193495 -2.175495 -2.164695 -2.155695 -2.143095 -2.130495

0.32 -2.234295 -2.210295 -2.195895 -2.183895 -2.167095 -2.150295
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PERFORMANCE

Primarily designed to operate at low level altitudes, the Delta
Monster achieves its maximum glide performance at speeds below the
primary operating speeds. If the speed is reduced at altitude to achieve a

maximum C13/2/cd = 26.84, the maximum glide distance for a given
altitude can be obtained from Figure 8.1. If the power system fails or
landing system becomes damaged during flight, the glide performance
becomes critical. Energy dissipation can be maximized through use of
Figure 8.2. At a max ClI/Cd = 25.87, the minimum rate of descent at
altitude can be obtained from this graph.

For the desired testing mission, the minimum amount of fuel
expended for a 28 minute test run is 1.323 Ibs of fuel. This value was
obtained by using  varied propellior efficiencies and a thrust specific fuel
consumption of 0.75 oz fuel/(min-shaft brake horsepower). Allowing for a
one minute and twenty second sweep at each 5 ft/sec increment in
velocity, the change in weight of the aircraft was computed as a function
of velocity and can be found in Figure 8.3. The variation of CI3/2/Cd and
Cl/Cd with velocity and change in weight is also charted (Figure 8.4).

The climbing performance of the Delta Monster at low level
altitudes of concern is shown in Figure 8.5. This graph displays static
rates of climb variation with velocities in the testing range. The
maximum rates of climb at each altitude are plotted in Figure 8.6. This
curve sets the absolute ceiling of the Delta Monster at 25000 ft and the
service ceiling at 23,350 ft.

The maximum range and endurance were calculated using the Bregust
formulas for velocities of 50 ft/sec, 100 ft/sec, and 150 ft/sec. These
values are listed in Appendix 8 along with the formulas. The power
coefficient was assumed to be a typical value of 0.5 Ibs fuel/hp-hour
again with varied propellor efficiency of 0.7. Note these values are at the
typical operating speeds and not at the velocities for maximum range and
endurance.
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Fig. 8.3: Weight Loss Over Testing Phase
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Fig. 8.5: Climbing Performance
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APPENDIX 8




Performance Parameters

Flight Velocity Propeller Efficiency Range Endurance
v _[ft/s] n[1] B _[miles] E [hours]
50 0.25 224.5 6.7
100 0.51 202.3 3.0
150 0.68 122.2 1.2

Breguet Formulas
1. Endurance (propeller):

E=(m/cp) (CL'/ Cp) @ps)'2 (/W2 - 1/w;2y)
2. Range (propeller):

R = (n/cp) (CL/ Cp) In(WyWy)

source '
Nelson, R.C., and M. Brendel, Atmospheric Flight Mechanics, pp. 4.47 - 4.57,

1988.
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SYSTEM OPERATION

LAUNCH / TAKEOFF

The proposed Delta Monster is to be catapult launched from a 20 ft.
rail. This length allows a constant acceleration of 64.4 ft/sz, taking the
craft from rest to 50 ft/s (see Figure 9.1). Since, the stall velocity is 40
ft/s, this margin is reasonable. If the Monster could be built for higher
loads, it could possibly be launched at 100 ft/s, the optimum launch
velocity, which would maximize rate of climb, and time to climb to the
mission altitude of 800 ft (Figures 9.2 & 9.3). Note that the 10 ft/s above
stall velocity will allow the craft to climb, and allow the self-propulsion
system to catch-up and stabilize.

The rail is to be inclined at 10 degrees to the horizontal. This will
launch the craft at the angle necessary to clear a 50 ft obstacle in 300 ft.
An additional benefit is the 3.5 ft that the launcher end is elevated. This
gives the Monster a small margin in case the self-propulsion system can
not obtain the necessary power just off the rail.

DATA COLLECTION AND INSTRUMENTATION

Three competing concepts were analyzed for use in obtaining in-flight
data and for flight control of the aircraft. Complete autonomous RPV
control, a ground link capable of full information transfer from the RPV to
a ground station, and limited information transfer between the aircraft
and the ground station were studied in order to determine the optimal data
acquisition package for the mission requirements. In addition, the
instrumentation required for the data acquisition was studied for both
flight control and data acquisition. The parameters used as criterion for
these studies were, accuracy, weight, volume, and cost. Finally, the
integration of the data analysis routine into the flight mission profile
was defined (see Figure 9.4).
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Fig. 9.3: Rate of Climb and Time to Climb

60 S
P
1 S
Q
2
50 1 maximum rate of climb
g ¥
S
=
40 -
301 o Rciis
® time [s]
20 A
10 H
o hd T i 1 v T v v 1 v )
0 20 40 60 80 100 120 140

velocity [ft/s]

160



ALITYNO ¥00d 40
Si A0V4 TYNIOINO

—47
_ | _ /3406 -
/35S BTA U,
o QN'Q’_\.V-I H‘DN(\V"\
//l

Fur\oag »oyo 35008

FV wd {N IS

(o7 otbuo wrjap hoon - |
/7[‘0[ P e ,.\1L'.v.a+g -
7139"”\ Mgt vigyy -~

[rsued 3yby g oprwgoo of yaymg

. i - e

P

Qo0L * *vw

3FJo00E ““w i
vo+ B X, av vAVQ

j';*nuzw OE =z uOl_‘_vJﬁQ f“‘("ld
N OIS3 W

6 JYNDHId



TATI

Six critical flight indicators were determined to be adequate for
control of the RPV, whether by an onboard computer or a ground link
system. It was determined that control of the RPV would be accomplished
by knowing aircraft angle of attack, roll angle, yaw angle, heading,
velocity, and altitude. The integrated use of these indicators would not
only allow automatic control of the aircraft but also would ensure
aircraft stability during the critical data acquisition phases of the
mission profile.

Several different methods for measuring angle of attack were
available for the RPV. Some electronic angle measuring devices were
cursorily examined for the use of angle of attack measurement,
unfortunately, the settling time of these devices was more than a second,
rendering their use for accurate flight attitude control insufficient. The
use of a yaw tube was a strong possibility because of its high accuracy,
but the need for durability, especially during landing and takeoff,
precluded its use as it is required to be placed on a sting well away from
the fuselage in order to obtain accurate readings.

The device that was chosen for the RPV was a windvane angle of
attack sensor with motion being measured by a rotational variable
differential transducer (RVDT), which has high accuracy. The RVDT is
capable of measuring angle variations of as little as 0.15 degrees (output
voltage .1 volt/°). The difficulty with this system is that it must be
calibrated when installed to ensure that it reads the angle relative to the
correct reference line. Additionally, since it is mounted on the side of the
fuselage, a study should be done to determine effects of fuselage
interference at various angles of attack.

The measurement of the roll angle will permit the operator (human
or computer) to know if the aircraft is banked. Constraining the bank angle
for accurate data acquisition would eliminate any instrumentation error
due to the aircraft's acceleration. When not in the data acquisition mode
this instrument could be used for turn control when coupled with a yaw
indicator, the roll angle measured by an inclinometer. Although bulky this
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instrument is highly accurate, capable of angle measurements of about
0.03°.

In conjunction with the roll indicator, a yaw indicator would be
necessary in order to ensure coordinated turns and stable flight conditions
for data acquisition. Since high accuracy of this device is not critical, a
ball-type, liquid level such as that in general aviation aircraft could be
coupled with an optical or magnetic sensor for the determination of ball
location. Such a device could be manufactured in-house at little expense.
Weight and volume could then be minimized by constructing the level with
light-weight materials rather than purchasing such an off-the-shelf
device. The use of a yaw indicator was deemed impractical for the same
reasons as it could not be used as an angle of attack indicator.

The use of a heading indicator would be necessary in order for flight
path control. Gyros used in private aviation have sufficient accuracy for
use in the RPV. A system with more sophisticated gyros slaved to a
magnetic heading indicator was deemed unnecessary. The gyro on the RPV
would have to be adjusted during the powering of the onboard systems
(before flight vehicle launch). Precession of the gyro was not expected to
pose a problem as the estimated flight duration is 30 minutes. Precession
during this period is predicted to be less than ten degrees as only gentle
turning (no radical maneuvers, large contributors to precession) is
expected. This deviation from the true heading would not be of concern as
the flight vehicle would be within sight at all times. The heading
indicator's primary use would be to ensure a constant heading during each
data acquisition run.

Velocity of the aircraft would be measured with a simple pitot-
static system. This would be located on the tip of one of the booms of the
aircraft to ensure that fuselage effects are minimized. Although other
systems, including a propeller velocity measurement device, were
considered, the accuracy of the pitot system, its small weight, and its
size precluded the use of another velocity measurement device. An
additional benefit of the pitot-static system is that the static pressure
can also be used for altitude control and for data reduction purposes.
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By maintaining a set pressure altitude (as opposed to a radar sensing
system or laser altitude system) one of the test parameters could be set,
thereby maintaining at least one consistent parameter between individual
tests. Additionally, space requirements for a pressure transducer would
be minimal when compared to the other altitude sensing devices. Although
actual altitude changes could be seen by the aircraft during its thirty
minute flight because of a change in the ambient pressure, these would be
minimal. The static pressure could also be used to measure rate of climb
as long as some care is taken when differentiating the output signal from
the pressure transducer (i.e. such as averaging old and new readings).

DATA ACQUISITION INSTRUMENTATION

The instrumentation required for accurate data acquisition of the
delta wing can be divided into two groups: those that define the flight test
conditions and those which read in the necessary data. Although the data
acquisition system is designed to read most types of data for maximum
test vehicle versatility, the focus of this section will be on the pressure
distribution on the delta wing.

Instrumentation which will define the test conditions includes the
velocity sensor, static pressure ports, ambient temperature sensor, and
delta wing angle of attack sensor. Velocity and static pressure can be
obtained from the flight control instrumentation. A thermocouple can be
used for a temperature probe in order to obtain the temperature at
altitude. This temperature can be quite different from the surface
temperature depending on both the aititude of the RPV and the wind
velocity and needs to be taken into account during data reduction. Lastly,
a linear variable differential transducer (LVDT) will be required to
measure the delta wing angle of attack. Used in conjunction with the
aircraft angle of attack sensor, the delta wing's location with respect to
the freestream can be accurately measured to within 0.2 degrees.

In order to maintain sufficient flexibility for testing, it has been
determined that a maximum of 100 pressure taps will be required in order
to fully instrument the top of a delta wing (with a worst case root chord
of ten inches and a sweep angle of 45°). Keeping in mind the volume and
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accuracy constraints, some miniature differential pressure transducers
were found with maximum pressure differential readings of +2 PSID with
accuracies of +0.05% full scale. These are ideal for this application as
the pressures on the delta wing top when compared with the static
pressure typically do not exceed one PSI. This pressure range allows the
greatest accuracy for the tests. The combination of accuracy and small
volume requirements at 13.4 pressure ports per cubic inch outweigh the
high cost of the system at $100/port. The use of these ports allows a
nearly simultaneous reading of all the ports by computer, yielding more
precise pressure distributions than obtainable using a scanivalve device,
especially when atmospheric disturbances make long term controlled test
conditions nearly impossible.

DATA ACQUISITION/CONTROL SYSTEM

Three different systems were available: complete autonomous RPV
control and data storage, a ground link capable of full information
transfer from the RPV to a ground station, and limited information
transfer between the aircraft and the ground station. Safety, weight and
price of these three different systems were of primary concern.

The use of a control and data storage system in the RPV is
advantageous in that the entire system is self-contained and does not
require any ground link telemetry other than the manual control system
used for takeoff and landing. This provides a drastic reduction in the cost
of the system. However, safety considerations outweigh any monetary
benefits gained through the use of this system. Once control is
transferred to the test vehicle, the RPV is in the hands of the onboard
computer. If this system malfunctions, there is the possibility that
control will not be returned to the pilot on the ground. This presents a
formidable safety problem, as an out of control 38 pound aircraft flying at
150 miles per hour is capable of doing an incredible amount of damage.
Due to this dangerous possibility, this type of system was not considered
past the early preliminary design stages.

The second system considered downlinked all the instrument
readings to a ground based computer for instantaneous viewing. The flight
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control data was then analyzed on the ground, and control information
relayed to the aircraft to maintain the flight profile required for the
particular test. This setup eliminated the safety problem inherent with
the first system by transferring control from the computer to the manual
transmitter in the event of a problem. This system would have the
additional benefit of utilizing a redundant control system in case of
failure of either system.

Once this system passed the safety concerns further research was
done on alternate systems that could be used for this purpose. The result
of this search was the development of a system that was capable of
reading the 100 pressure ports, amplifying the signal for maximum
accuracy, performing a 16-bit A/D conversion, converting these reading to
pressures, and then sending the data to a transmitter for relay to the
ground at 1200 baud. A data relay back to the RPV was capable of
controlling the vehicle's flight and test conditions of the delta wing. The
system was simple to use, compact, and highly accurate. It had the
additional benefit that test data was almost instantaneously available for
review. Unfortunately, the package weight of 17 pounds was far in excess
of what was desired. This package would be an excellent option if the
size of the test bed vehicle was not critical.

However, it was desired to keep the aircraft as light as possible, in
order to allow the use of inexpensive construction materials. A hybrid of
these two systems, utilizing an onboard computer for signal
amplification, A/D conversion and data manipulation and storage with a
ground link system for vehicle flight control combined the best features
of both systems. This system has a redundant control system for safety
and a small ground-linked system without the usual weight penalities
associated with total data transfer.

The resulting system would be capable of transmitting 8 channels of
data to the ground and back to the RPV. Angle of attack, roll angle,
heading, yaw, velocity, and altitude could be transmitted to the ground for
flight control with the other two channels being specified by the user
before the flight. These signals would be read into a ground based
computer which stored the control laws for the flight. The aircraft's
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control surfaces could then be controlled by the ground based computer to
achieve a desired flight condition. The ground based system would be able
to control the elevator, rudder, ailerons, throttle, delta wing stepping
motor (for angle of attack control), and a data acquisition trigger.

The onboard computer system would be ten computers hooked
together in parallel which would be capable of reading eleven channels of
data each with 10 bit A/D conversion possible. Each individual computer
is capable of a conversion every 0.01 second, allowing a complete sweep
of all pressure ports to be completed within a tenth of a second. The
current data acquisition cycle calls for each port to be read 100 times,
with the average and standard deviation of these readings then stored for
retrieval on the ground. With 28K available for data storage, over one
thousand test series could be stored before data would need to be
downlinked to another computer.

DATA ACQUISITION DURING THE MISSION

The RPV is to be manually launched and controlled through climb to
altitude after which control will be switched over to the ground based
computer. Once this has been accomplished the computer will begin a
series of "racetrack" ovals, with each circuit lasting two minutes. The
straight legs of these ovals will be flown upwind or downwind, so that in
the event of a strong headwind a manual correction could be entered into
the computer to extend the upwind leg slightly to correct for drift and
keep the RPV over the test range. Once the aircraft enters the first turn,
it will begin the test cycle by adjusting the delta wing angle of attack and
velocity for the first test condition. After completing the turn (within 30
seconds), the aircraft will be allowed fifteen seconds for the control
system to assume a steady flight profile.

Upon completion of the waiting period, the data collection phase
begins, with the ground based computer triggering the airborne computers
to begin data collection. If any set limits on any of the flight control
readings exceeds a set limit (such as a gust changing the angle of attack
of the aircraft), data acquisition can be interrupted until the disturbance
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passes or is corrected for by the ground based control system. Once the
ten seconds necessary to read each port a hundred times is completed, the
aircraft will begin its 180° turn. During the turn and settling phase, the
onboard computer would be manipulating the readings and recording the
average and standard deviation. This cycle then repeats up to nineteen
more times, the maximum time allowed for data acquisition being twenty
minutes. Control will then be returned to the ground pilot for entry into
the traffic pattern and landing.

RETRIEVAL / LANDING

The proposed Delta Monster will execute a standard runway landing.
The pilot will trigger a servo which will extend the landing gear. The
craft will descend on a 10 degree path, which will allow for the clearance
of a 50 ft obstacle 300 ft prior to touchdown. This descent could
alternately occur in a gentle, banking circle if constrained by objects or
visibility. Landing speed will be 45 ft/s, only slightly larger than stall
speed of 40 ft/s. Very simple estimates of ground roll distance, assuming
constant deceleration, maximum braking, and no skid, yielded a best case
distance of 303 ft (Hale, p. 141).
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STRUCTURAL DESIGN

e ——————

INTRODUCTION

The specific design challenge at hand poses some very special
problems. First, since the aircraft is to be used as a test bed for
aerodynamic tests on a delta wing planform model the structural integrity
of the aircraft must be such as to allow for odd flying conditions and
configurations. Secondly, in order to remain aloft for a reasonable period
of time to obtain sufficient data, the aircraft must be especially light.
And, thirdly, due to the dependence of the aerodynamic surfaces on their
respective positions relative to the freestream, the supporting structure
must be sufficiently stiff so as not to alter the performance of this
vehicle. Also, all calculations were to be performed within the flight
envelope shown in Figure 10.1a.

In response to the previously mentioned challenges and concerns, an
aircraft sub-structure has been analyzed. The results of the analyses
performed indicated that the structure for the aircraft under
consideration will be a relatively lightly loaded, light weight structure.

The main wing of the aircraft (NACA 4412 airfoil, 1 foot chord, 14
foot span) will be constructed from spruce, balsa, and a thin outer coating
of shear load carrying Monokote™. These lightweight low strength
materials were chosen primarily due to the light loading on the aircraft.
Since the main wing was a critical area, a large portion of the analysis
was performed on this sub-structure.

Another critical area was the twin tail booms. Since performance of
the tail surfaces (both horizontal and vertical) depends on their
respective geometric angle of attack which, in turn, hinges on the
stiffness of the tail booms, a parametric trade study was performed in
this area. The results of this study indicated that these structural
elements could most effectively be constructed of hollow circular cross
section (outside diameter = 1.25 in., inside diameter = 0.5 in.) spruce at a
length of 3.3 ft. For this design, the elements' performance is expected to
be quite good.

The other structural elements, including the horizontal tail surface,
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vertical tail surface, and the fuselage were given lesser attention.
Feasibility studies were performed on these sub-structures yielding
favorable results allowing for construction also using spruce, balsa, and
Monokote ™. However, due to the low-weight, high-strength properties of
composite materials, further investigation might allow for the use of
these advanced materials.

PRIMARY WING

Considerable consideration was given to the structural design of the
primary wing. Using the NACA 4412 airfoil shape as the base planform on
which to model the wing, several design analysis techniques were used to
determine the final design of the wing. Initially a lifting line and
structural analysis program was developed (Appendix 10.1) to study the
effect of the modeled planform cross sectional area on the highly stressed
members at the root of the wing. The information obtained from this
program was utilized in obtaining a more precise model of the wing to be
incorporated in the final design of the wing using Swiftos™1, a finite
element code. This finite element analysis supported the conclusions
taken from Appendix 10.1 and allowed for a more detailed structural
analysis of the stressed members. The worst case load configuration was
supported by a wing of balsa leading and trailing edge spars, and spruce
main spars located at thirty percent of the chord. The final wing design
can be seen in Figure 10.1 and structural details in Table 10.1.

Table 10.1
Structural Details of the Main Wing
Structural Material Detailed Root Stresses for Max Load (psi)
Component Description Sxx Syy Sxy
Main Spar Spruce Tappered 204.81 1160.33 -385.38
(root to tip)
Leading edge Balsa Shapedto LE  9.81 259.16 21.53
Trailing edge Balsa Shapedto TE -1.05 -229.52  -87.18
Ribs Balsa Shaped to Wing -12.92 -4.00 -10.59

Sheeting Monokote™
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LIFTING LINE PROGRAM

The use of this program requires a user generated data file including
the necessary information concerning the model, spar locations, areas,
moduli of elasticity, and densities of the materials. Several models were
tested using the aforementioned program. Although very complex models
were able to be tested, the results were most reasonable with the four
spar area model. Several of the models tested can be seen in Figure 10.2,
while the final model used for this program can be seen in Figure 10.3.

This program generates the lift and the drag distribution for the
given flight configuration and calculated the stress resultants and
stresses in any of the members from the loadings. For the final test case
with this program it was determined that the worst case loading would be
a two g load (60 pounds) occuring for both the maximum velocity of the
proposed Delta Monster of 150 ft/s at 2 degrees angle of attack, and at 60
fYs at an angle of 12 degrees. Several velocities and angles of attack
were tested for this model and the results are tabulated in Table 10.2 (see
Figures 10A2.1-10A2.14 in Appendix 10.2 for a more complete
representation of the results of the loading and stress resultants from the
test case).

Table 10.2
Test Case For Appendix 10.1

Velocity Angle Lift Drag _Member Stress (psi)

(f/s) (degrees) (lbs) (lbs) 1 2 3 4
50 2.0 6.72 1.45 14.7 -22.7 10.0 0.25
75 2.0 15.1 3.28 -36.8 74.3 -14.0 -17.8
100 2.0 26.9 583 -108.9 210.1 -47.7 -43.1
150 2.0 60.6(2g) 13.1 -3149 5981 -1439 -1154
60 3.0 145 2.11 -36.5 70.5 -15.9 -14.6
60 6.0 29.1 2.14 -137.4 248.9 -70.2 -38.7
60 9.0 43.6 2.20 -240.5 428.7 -127.2 -60.9
60 12.0 58.1 (~2¢g) 2.29 -345.4 609.0 -186.8 -81.1

The load distribution was determined using Prandtl's lifting line theory2
(Anderson: Introduction to Flight) and were verified using the Lin-air™
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lifting line program. Comparison of the results from the two lifting line
programs can be seen in Table 10.3.

The loadings generated by the lifting line section of the program
were the result of iterations to determine the stress resultants along this
"complex beam". The methodology used for this analysis was a basic
stress analysis as developed by Allen and Haisler.3 This analysis showed
high levels of stress in the main spars and lower levels of stress in the
leading and trailing edge spars. It was determined from this result that
the main spars were to be made of spruce and the leading and trailing edge
spars were to be of balsa construction. This drastically reduced the
weight of the wing while maintaining appropriate levels of stress in all

Table 10.3
ifti i mparison
Aero Lab Results Appendix 10.1 Resul
Span 14 ft. 14 ft.
Chord 2.0 ft. 1.0 ft.
Angle 6.0 degrees 6.0 degrees
Wing Position Cl Wing Position Cl
0.0 (root) 542 0.0 .607
1.095 ft. .540 1.09 ft. .604
2.163 ft. .534 2.16 ft. .593
3.178 ft. 522 3.178 ft. .569
4.115 ft. .503 4.115 ft. .518
4.950 ft. 474 4.950 ft 450
5.663 ft. 431 5.663 ft. .363
6.237 ft. .369 6.237 ft. 247
6.657 ft. .278 6.657 ft. .205
6.914 ft. .151 6.914 ft. 174
7.0 (tip) 0.0 7.0 .090

the members. In each case, member #2, the upper main spar had the
highest stress levels. This was consistent with what was expected
because this spar is the main load carrying member. A graphical
representation of the effect of the loading on the stress level of the
second member can be seen in Figure 10.4. The design of the wing then is
concerned with maintaining structural integrity of this main spar. The
stress levels in the member of the model were presented in Table 10.2. To
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insure a reasonable factor of safety in the overall design and modeling
technique, a more accurate representation of the wing was utilized though
the Swiftos™ finite element code.

Concerns that arose from the program contained in Appendix 10.1
were analyzed and corrected as necessary. Initially, the lifting line
subroutine was corrected and verified with the results from the Lin -air™
lifting line program (Table 10.3). Another concern was the modeling of
the cross section of the wing. As mentioned earlier, several models were
tested to determine the appropriate placement of the spars and material
selection. Initially, the spars were made of the same material, spruce,
however, this caused several problems in the stress distribution. It was

FIGURE 10.4: STRESS DUE TO BENDING IN MAIN SPAR #2
700 -
600 - g
500 -
400
300 4

200 B

DIRECT STRESS psi

100 -

0 -

-100 v 1 I 1 |
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determined that only the main spars needed to be made of spruce while the
leading and trailing edge spars were able to be made of balsa, a lighter
material, to reduce the weight and stifiness of the beams. This forced the
loads to be carried by the two main spruce spars. Optimally the placement
of the main spar was determined to be at or near the aerodynamic center,
(30% of the chord), so as to carry the majority of the load. The main spar
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was placed exactly at the 30% chord location in the final design. This
significantly reduced the stresses in the leading and trailing edge spars.
Somewhat high levels of stress were still present in all the
members at this point in the design process. The loadings on the wings
had been verified but the stress analysis technique had not. Therefore, a
simple beam was modeled and tested. See model #4 in Figure 10.2. The
results of this simple beam were verified and determined to be correct.
The total load on the airplane was then analyzed and found to be high. At a
velocity of 150 ft/s and an angle of 10 degrees a total lift of 125 lbs (4
g's) was produced. This loading was more than two times the expected
worst load case flight configuration, thus the high stress levels made
sense. Therefore, the flight configurations being tested were re-analyzed
and more realistic results were obtained. For a flight velocity of 150 ft/s
and an angle of attack of 2 degrees, a total lift force of 60.56 Ibs was
produced, or approximately the maximum load specified by the design. At
a velocity of 60 ft/s and an angle of attack of 12 degrees, a lift of 58.14
lbs was produced, again the maximum load. in each of these maximum load
cases the stress levels in the members were within a reasonable margin
of safety for the design. The various flight velocities and angles of attack
and the resulting lift forces and corresponding loads in the members can
be seen in Table 10.3. Although acceptable results for the stresses in the
members were now seen, these were simply the direct stresses due to
bending in the wing. A more accurate model was needed for the final
design of the wing and more precise loadings needed to be used. The
information obtained from this four member model was carried over to the
model created for the Swiftos™ finite element analysis (see Figure 10.5).

WIF ™

Having done the preliminary analysis with the internally developed
program and achieved some high stress values, a further refinement to the
design process was considered to be in order. Therefore outside help was
solicited in the form of an externally developed finite element code by
Richard Swift, a Master's Degree candidate at the University of Notre
Dame.

10-6



”

ZOQP/ wom\:‘m
FCB?&Q‘ Qveag

At
mnlo ..ﬂo,v" .TzoJM

\ﬂ@c*,m\ /0.5 MoveL Fer M:.LZH.WOM



The use of this code to analyze the rough model of the wing sub-
structure necessitated a drastic refinement in the model. Considerable
time was spent in this endeavor and a much better approximation to the
actual sub-structure was developed. However, the creation of an accurate
model that physically resembled the actual sub-structure was difficult at
best. A

Due to the low aerodynamic loading on the aircraft and a maximum
two "g" loading imposed by the design team, it was suggested that the
conventional materials of balsa and spruce be used in the model for the
sub-structure (ribs and spars) while a thin, plastic covering (Monokote™)
was suggested for the outer covering over the sub-structure.

The basic model was very conventional. There were three spars, a
leading spar made of balsa, a main spar made of spruce, and a trailing edge
spar made of balsa. The model also contained 22 ribs made of balsa
placed along the span of the wing. The model very accurately represented
the real concept in that the wing span, wing planform, and rib placement
remained intact in going from the actual concept to the model. This rib
placement was conventional in that most of the ribs were evenly spaced
along the span. However, to account for the interface between the tail
boom and the wing, a rib was placed at that location and given a thickness
of three (3) times the other ribs. Also, extra ribs were added inboard,
under the fuselage. Another attempt to improve the accuracy of the model
involved the addition of point loads on the wing, especially at the points
where the tail booms were attached.

The major problem encountered, however, involved the modelling of
the Monokote™ skin. Because no material properties or allowable stresses
could be found for this material, the model was forced to deviate from the
actual concept. Three ways to model this thin coating of material were
attempted.

First, because it was suggested that the model should reflect the
design of the sub-structure, if the sub-structure was designed without
the skin it would be all that much stronger with the addition of a skin.
Since the computer code required the input of skin elements, it was
decided to approximate the desired condition (no skin) with a rubber-type
substance. This "phantom material” was given a very low modulus of
elasticity (1000 psi), a slightly high Poisson's ratio (0.5), and no mass
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density. Unfortunately, this model resulted in a structure with massive
twist along the span and a twist of 7.7 deg. at the tip (relative to the
root). Therefore, it was determined that the model needed to be refined
further.

The second attempt to accurately model the Monokote™ skin
covering resulted from the suggestion that the material properties should
be representative of some sort of a plastic, however, this material should
carry no load in compression (thin skin). Therefore, a resin was chosen to
model the material properties and the skin elements were not allowed to
carry any compressive loads. This model improved the twisting problem
(6.18 deg. at the tip). However, the computer code depended on the
calculation of a Von Mises ratio to determine the degree of stress in each
element. This was unable to be accomplished for the skin elements
because of the zero allowable compressive stress input to the code. Again,
it was determined that a refinement in the model would produce better
results.

The final mode! was then developed representing the 0.004 in.
Monokote™ skin as 1/16 in. thick balsa sheeting. The reasoning behind this
choice was that balsa is one of the lowest strength materials readily
available (especially in compression) and the difference in thickness
would nearly offset the density difference to make the weight of the wing
approximately the same. This model produced very good results (twist at
wing tip of 2.7 deg. relative to the root) and it was decided to use this
model for an optimization.

When the Swiftos™ finite element code ran an optimization, the user
specified the elements to be optimized and these elements were reduced
in size (cross sectional area) until they were fully stressed and the total
half-span wing weight was calculated upon each iteration. One such
optimization was run with the previously discussed model.

Table 10.4 shows the results of the weight reduction process by the
computer code with each iteration. According to the value given for the
final iteration (iteration #9) this final wing would have a weight of 2.57
Ibs. A more sound weight estimate was obtained by multiplying this
weight given by the computer code by a factor of safety/uncertainty of
two (2). Considering the fact that the overall weight of the entire aircraft
is 28 Ibs., this required that the wing be approximately 18.4% of the total
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aircraft weight. For this type of aircraft, where a large portion of the
total aircraft weight is comprised of the instrumentation for data
acquisition and transmission, this value seemed very reasonable.
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The final results of the optimization yielded minimum cross
sectional areas for the specified optimization elements. These elements
consisted of all three spars and their respective spar caps. The ribs were
left at a minimum gage (1/8 in. thick) due to their low stressed state. The
main spar was of primary concern. The finite element code specified a
minimum of a 1/2 in. thickness at the root and tapered it to a 1/8 in.
thickness at the tip. The optimization did not effect the 1/4 in. tailing
edge spar and only suggested slightly increasing the area of the leading
edge spar at the first two stations near the root.

Although the optimization gives the designer the cross sectional
areas to meet the fully stressed condition, the resulting structure could
possibly fail at the design point. Also, for this case a larger vertical
deflection of the wing tip was experienced (9.4 in. at 7 ft from the root
with a twist of 6.47 deg.). Therefore, all numbers obtained from the
computer code should be multiplied by a factor of safety/uncertainty of
1.25-2.0 and the next largest commercially available size elements should
be chosen (for economic reasons). This should yield a safe design. .
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TWIN TAIL BOOMS

Since the aerodynamic performance of the tail surfaces was
determined to be strongly dependent upon their respective geometric
angles of attack, a structure designed to support these surfaces was
determined to be of extreme importance. Therefore, a detailed design
study was performed on these structural elements.

The tail booms were considered to be identical. Therefore, on the
basis of symmetry, it was determined that only one boom needed to be
analyzed. Acting under this premise, the tail loadings were considered to
act equally on each boom.

Four primary "figures of merit" were established in order to
evaluate the possible combinations of variable parameters. The first goal
was to keep drag to a minimum. Secondly, the weight needed to also be
kept to a minimum. Thirdly, the bending of the booms in the vertical
direction had to be kept to a minimum. And, finally, the twist of the aft
end of the boom relative to the forward end also needed to be minimized.

The model developed for the analysis of these structures was a
simple one. The booms were considered to be beams cantilevered at the
wing and free to move at the aft end. The effect of the weight of the beam
was considered to be negligible compared to the effect of the loadings due
to the tail surfaces. Since both the horizontal and the vertical tail
surfaces were flat plates (or symmetric airfoils) and the weight of the
entire aircraft was only 28 Ibs., for normal flight it was determined that
the horizontal tail should never produce a load greater than 10 Ibs. and the
vertical tails should never produce loads greater than 5 Ibs. each. These
loads translate to a vertical load (up or down) of 5 Ibs. and a torsional
load about the longitudinal axis of the beam of 25 in-lbs. (in either
direction) (see Figure 10.6).

Due to some realistic concerns, the range of acceptable changeable
parameters was defined. These parameters include 1) cross sectional
shape, 2) outside diameter, 3) length, and 4) material selection. First,
since texts on solid mechanics and structural behavior indicated that
circular cross sectional elements behave much better than other cross
sections under conditions of torsion, and because aerodynamic drag due to
smooth contours is less than that due to abrupt ones, a circular cross
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section was chosen for all analyses. Second, due to drag and weight
conditions, the range of acceptable outside diameters was set at 0.6-1.5
in. Third, because control rods for the rear tail control surfaces (elevator
and rudders) needed to run from the servos in the wing to the tail inside of
the booms, a hole 0.5 in. in diameter was needed along the entire length of
the boom. Fourth, because a sufficient moment arm was needed for
effective performance of the tail surfaces, the boom length needed to be
between 2.5 and 3.5 feet. Finally, only certain materials were considered
as candidates. In order to span a fairly wide range of material strengths
and weights, the prospective materials were chosen to be balsa, spruce,
aluminum, titanium, and a carbon steel.

Having constrained the variable parameters, four sensitivity studies
were performed. The first study examined the effects of outside diameter
and length on drag. The next study determined the effect of outside
diameter, length and material selection on weight. The following study
examined the effect of outside diameter, length, and material selection on
beam bending, while the final study examined the effect of these same
parameters on twist angle.

The first study performed was concerned with the drag produced by
the tail booms. For drag calculations, due to the orientation of the boom
along the direction of flow, skin friction drag was considered to be much
more significant than any pressure drag that might result. Therefore, the
flow was considered to be turbulent along the entire surface of the boom
and the circular element was considered as an equivalent flat plate. The
two variable parameters effecting the drag were the outside diameter and
length of the boom. Variation of these two parameters produced some
interesting results.

As the length of the boom was varied across its entire range of
acceptable values while the diameter was held fixed at 1.0 in., the plot in
Figure 10.7 was generated. This curve shows a linear relationship between
the drag on the boom and the length of the boom.

However, looking at Figure 10.8 which is a plot of the effect of both
length and diameter on the drag, it can easily seen that the effect of
changes in diameter have a much more pronounced effect on drag produced
by the boom than length. The increase in diameter definitely increases the
drag, but also seems to increase the slope of the drag vs. length curve.
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Nevertheless, all cases shown in Figure 10.8 show that the drag on the
boom is extremely small and it would seem that any choice of outside
diameter and length would be acceptable from a drag standpoint.

The next study that was performed concerned the sensitivity of the
weight of the boom to variations in length, outside diameter, and material.
Since weight is dependent upon material density and volume, all three
parameters have some effect on the overall weight.

As can be seen in the plot of the effect of length and diameter on
weight (Figure 10.9), the weight exhibits a dependence very similar to
that of drag on these two parameters. The weight vs. length curve is linear
(as expected) and variation in the outside diameter has a more pronounced
effect on the weight than do variations in length.

In order to evaluate the influence of material selection on the
weight, the five prospective materials were used to calculate weight vs.
length curves for a constant outside diameter of 1.25 in. As can be seen in
the plot in Figure 10.10, material selection plays a very definite roll in
weight calculations. For example, steel with a corresponding boom weight
of 8-12 Ibs. (which is extremely unreasonable for this design) is much
heavier than balsa with a corresponding boom weight of 0.18 - 0.25 Ibs.

Having determined the sensitivity of the drag and weight of the
boom to variations in the length, outside diameter and material selection,
the next concern rested with acceptable levels of bending at the aft tip
where the tail surfaces were to be connected. Therefore, the effect of
length, outside diameter, and material selection on tip bending deflection
comprised the next sensitivity study.

As can be seen in the plot of the effect of length and diameter on the
bending deflection (Figure 10.11), variations in length affect the tip
deflection more at smaller diameters. As might be noticed, the curve for
an outside diameter of 0.6 in. does not appear on this plot. This is because
the tip deflections for this case were totally unreasonable ranging from
15-43 in. This eliminated an outside diameter of 0.6 in. from further
consideration.

Figure 10.12 shows a plot of the effect of the material selection on
tip deflection with a constant outside diameter of 1.25 in. As can be seen
from this plot, the metals behave very similarly while spruce performs
slightly worse. However, the worst tip deflection for spruce was 1.22 in.
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Figure 10.9
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Figure 10.11
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at a length of 36 in. This resulted in a change in the geometric angle of
attack of the horizontal tail surface of only 1.94 deg. After consultation
with the Stability and Control expert, it was determined that this was
very reasonable. Note also that no curve appears in Figure 10.12 for balsa.
This is because unreasonable deflections of 9-24 in. Therefore, balsa has
been eliminated from further consideration.

The final sensitivity study performed in order to evaluate the
effects of the variable parameters on the design involved a study of the
effects of length, outside diameter, and material selection on the twist of
the boom. Again, as can be seen in Figure 10.13, the relationship between
the figure of merit and length is a linear function. Also, the effect of
outside diameter is very small for diameters greater than 1.0 in.
Diameters of 1.0, 1.25, and 1.5 all produce angles of twist of less than
approximately one degree (1 deg). This would seem to be exceptional
performance.

Material selection also plays an interesting role in the twist study.
As can be seen in Figure 10.14, the metals (steel and aluminum) exhibit
virtually no twist while spruce exhibits very little twist (0.3-0.4 deg) for
a constant outside diameter of 1.25 in. Again, after consultation with the
Stability and Control expert, these values were considered to be very good.
Note also that no curve for titanium appears in Figure 10.14. This was for
two reasons. First, extremely limited values for shear loads tolerances
were available (indicating that this material was not especially good for
this application). And, secondly, since titanium is usually used in high
temperature applications (and is very expensive), it would seem to be
inappropriate for this application.

In conclusion, after again consulting with the Stability and Control
expert, a boom length to provide an optimum moment arm for the tail
surfaces results in a choice of 3.3 ft. for the boom length. Also from the
weight, bending and twist analyses, a diameter of 1.25 in. and a material
composition of spruce were determined to produce the best all around
element characteristics. Therefore, after evaluating the sensitivity of the
drag, weight, bending tip deflection and twist of the circular boom, to
variations in boom length, outside diameter, and material composition, a
final "best case" has been determined.
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Figure 10.13
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FUSELAGE

Due to the specific volume carrying requirements (data acquisition
and transmission equipment) of a flying test bed aircraft, the proposed
fuselage is quite large. However, because of the especially low loading of
this aircraft, lightweight materials are more than sufficient to safely
support the requirements.

Since this sub-structure was considered to be less critical than
other structural elements, a very limited feasibility study was performed.
For the feasibility study, a simplified model was developed. The fuselage
was modeled as a thin-shelled (monocoque) structure ( 10 in. in diameter
and 36 in. in length) augmented with six longitudinally positioned
stringers as shown in Figure 10.15. The "shell" was made of 1/8 in. thick
balsa and each stringer was made of 1/4 in. X 1/4 in. spruce.

Since the only other structural element connected to the fuselage
was the main wing, this element was considered to be the major source of
loading. At the interface between these two elements, a load of 28 Ibs.
was assumed to be transferred from the wing to the fuselage. This load
corresponds to the weight of the aircraft or the lift produced during
cruise. The only other loading considered was the weight of the aircraft
which was assumed to be a uniform distributed load applied along the
length of the fuselage.

For the purposes of loading calculations, the fuselage structure was
considered to be a simple beam. Since the loading considered primarily
gave rise to a pitching moment, the maximum value of this quantity was
found to occur at the point of attachment of the wing. For a wing attached
at a point 18 in. from the forward-most edge of the structure, a maximum
pitching moment of 126 in-Ilbs. was calculated. This loading gave rise to a
maximum direct stress due to bending of only 4.41 psi. which corresponds
to an extremely high factor of safety/uncertainty.

Since the analysis performed was very simple, the extremely small
final maximum load was considered to be somewhat reasonable. Aithough
such limited analysis was performed on this structural element, the
results do indicate that the fuselage will be lightly loaded and thus will
be able to be constructed out of lightweight materials resulting in good
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overall performance of the system. If anything, the model analyzed might
be considered over designed. With the addition of two or three bulkheads
constructed out of lightweight plywood for separating internal
components and additional stiffness, it would seem that a safe and
lightweight fuselage could be designed.

HORIZONTAL STABILIZER

The horizontal tail, a NACA 0012, was modeled as a simple beam
supported at both ends. The lifting force from the tail would be directly
supported by the spars and therefore a simple beam was used. By placing
the load at the aerodynamic center of the symmetric airfoil, 75% of the
load would be carried by the leading edge spar and 25% by the trailing edge
spar. The cross brace members serve the purpose of supporting the drag
force, but add little strength to the overall stiffness of the "beam" (See
Figure 10.16). It was determined from earlier analysis on the primary
wing that the loads produced could be supported by spruce and balsa spars.
The worst case loading was determined with 30 degrees of elevator
deflection and a Cl of 0.5. The total lift produced was 15 Ibs.
incorporating a factor of safety of 1.25. The maximum point of deflection
for a beam supported at both ends is at the center of the beam (see Figure
10.17).

An accurate model of the horizontal tail was achieved by increasing
the area of the leading edge to take into account that it has to support the
main load. It was also determined that it would be made of a spruce
member shaped to the leading edge of the NACA 0012. The trailing edge
was to be made of balsa to reduce the weight of the tail yet carry the
load. For the preliminary analysis this proved to be more than adequate.
The spruce leading edge saw a maximum stress of 472 psi. and a
deflection of 0.308 in. The maximum deflection occurred at the semi-span
of the horizontal tail because the tail acts similarly to a beam supported
at both ends. The trailing edge (baisa) stress was seen to be 355 psi. at
the maximum loading. The shear stresses seen by these members was
calculated and determined to be supportable (120 psi. and 90 psi. acting on
the leading and trailing edges respectively) (See Table 10.5).
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The cross supports in the tail are to be made of balsa to reduce the
weight. Because very small forces need to be supported by these
members, they help to maintain the shape of the airfoil. The overall
weight of the horizontal stabilizer was calculated to be 1.50 Ibs.
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Table 1

S Levels P in_the Hori | Tail
Area(in2) Stress(psi) Max Deflection(in)
Balsa LE 1.313 472.7 6.17
TE 0.875 355.0 2.05
Spruce LE 1.313 472.7 .308
TE 0.875 355.0 .103
Birch LE 1.313 472.7 .199
TE 0.875 355.0 .066

VERTICAL STABILIZER

In consideration of the twin vertical tail configuration, the tails
needed to be identical and perfectly aligned. Because there were two
vertical tail surfaces, each tail needed to carry only half of the load
necessary for directional stability. In the worst case a maximum loading
of fourteen pounds would be needed to maintain stability. Each tail would
then see a maximum force of seven pounds. This loading is based on a
rudder deflection of 25 degrees and a factor of safety of 1.4. The small
cross sectional area (maximum thickness) of the NACA 0012 airfoil to be
used on the proposed Delta Monster was the main constraint on the area of
the spars. The structural analysis assumed a simple beam supported at
the base of the vertical stabilizer. The load was assumed to be
distributed as follows: 75% of the load acting on the leading edge spar and
the remaining load (25%) on the trailing edge spar. The design of the
leading edge spar incorporated the fact that it needed to support the
majority of the load, therefore a spruce leading edge and a balsa trailing
edge were selected (See Figure 10.18). The maximum design loads and the
resulting shear and bending moment diagrams can be seen in Figure 10.19.
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In analyzing the loading, a maximum stress level in the spruce spar
was seen to be 757.6 psi while the stress in the trailing edge balsa spar
was 449.0 psi. It was determined that the loads could easily be supported
by such a design. The cross members would more than adequately support
the load due to the drag on the tail (See Table 10.6). As was the case with
the horizontal stabilizer, the members were to be made of balsa to
minimize the weight. The overall weight of the vertical stabilizer was
found to be 0.35 pounds.
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[able 10,6
S l s P in the Vertical Tail

Area(in?) Stress(psi) Max Deflection(in)
Balsa LE 0.500 757.6 4.00
TE 0.375 449.2 1.34
Spruce LE 0.500 757.6 .020
TE 0.375 449.2 .067
Birch LE 0.500 757.6 .013
TE 0.375 449.2 .043

Although it has been shown that tail surfaces constructed of balsa
and spruce should easily support the required loads, further refinements
of both the loading model and the sub-structure model is necessary for
further design.
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‘0PN UNIVERSITY FTN77 VER. 2288 CUSER3>5213900561 >STUDENTOWING. F77 14:11: 41

'I' TR OPTIONS: LISTING INTL NOMAP CHECK NOBIG LOOL DYNM NOOFFSET LGO NOANS1I NODEBL
FPN NOLUNFREC NOSILENT NO_OPTIMISE NOIMPURE

0 | PROGRAM WING

o c BRIAN MCDONALD

385£ c PREL IMINARY DESIGN OF THE WING BY DETERMINING THE ROOT BENDING
Q7% c This program determines the direct stress due to bending

Q0 5 c on an airfoil section. Prandtl’s lifting line theory for a

o 7 c finite wing is used to find the 11ft generated by the

008 C airfoil.

009 c TheAgro ram determines the section pro erties

0 ) c of the data input through the data file. The loadings found

Q0 L c from the lifting line theory ave then agpliod to find the stress
1012 c resultants. For a given as ect ratio the root stresses are found
ig}% c and ploted. EITHER THE VELOCITY OR THE ANGLE OF ATTACK CAN VARY
{0 . REAL A1(52.53).C(52).AIN(52).0(52).CL(52).CDI(52).Y<14).Z(14)

0 5 REAL A2(14).E(14).IYY(14).IZZ(14).IYZ(14).PY<26).PZ(26).HXL(26)
017 REAL VY(26).VZ(26),MX(26).MY(26).MZ(26).X(52).PS(26).ANO(52)
1018 REAL PLO(26.4).PL01(26.4).PL02(26.4).PL03(26.4).PL04(26.4)

0o ? REAL PS1(52).PMAT(14).NCHUNK(14).PDCL(52.4).POCD(52.4)

Lo B REAL 21(14).Y1(14).SIO(4).VEL(4)'ANGLE(4)

?855 INTEGER LOC(32)

0773 OPEN(UNIT-éb.FILE-’AIRFOIL.DATA'.STATus-‘UNKNDNN')

ol ) TEST= O.

Q0 3 WTOTS= O.

0b6 Cc St Boliodindiodiad DATA INPUT 3333303034 %

027 READ (66, #)K

Q3 DO 14 J = 1.K

Q0 ?.01 READ(bb.*)S-Zl(J).Y1(J).A2(J).E(d),IZZ(J).IYY(J).IYZ(J).PMAT(J)
10a0. 01 WCHUNK (J) = A2(J)#PMAT(J)

3031. O1 WTOTS= WTOTS+ WCHUNK(J)

Q™2. 01 14 CONTINUE

0 3 WRITE(1, #} ‘IWR?’

o 3 READ(1, #) IWR

039 65 CONTINUE

036 TEST = O.

0 7 TH = 0.

Q3 WRITE(1, #) ‘ENTER THE NUMBER OF WINCS TO BE TESTED (1-4)'

‘037 READ(1, #) IM

040 DC 100 MLOOP = 1, IM

0*1. 01 cho = . 033

Q 2.01 CHORD = 1.0

Q0 3. 01 B = 14.0

‘044. 01 WTOT = WTOTS#*B

045, 01 WRITE(1, #) ‘WEIGHT = ‘., WTOT

Q 5.01 CENP = . 3

Q 7.0t CENP =-CENP * CHORD

1Qu8. 01 WRITE(1, #) ‘ENTER THE AIRSPEED IN FT/SEC’

933 01 Noess

1 R == F ~
0 1,01 N ITEe1, #) ‘ENTER THE ANGLE OF ATTACK' ORIGINAL PAGE IS
0._2. 01 READ(1, #)A OF POOR QUALITY
033, 01 A = A#4#ATAN(1.)/180.

1084, 01 DA 0.0

0 5. 0t RHO = .0023769

Q 5.01 po0 31 = 1.,N

027. 02 PS1(1) = -B/2. +REAL (1 )#B/REAL (N}

088, 02 3 CONTINVE

0" 9. 01 po 41l = 1, K

Q0 0. 02 Z(I) = Z1(I)

O_1. 02 Y(I) = Y1(I)

062. 02 4 CONTINUE

;862.8% CALL ALPHA (N, DA, A, A1, C, CHORD, B, ANG)

0 9. 01 CALL SIM(N.AI.B.V,CHORD.AIN.G.CL.CDI.BCL.CLTDT.CDTOT.TEST.x
W0ab. 01 . LOC, TH, C/ ANG., CDO)

067. 01 WRITE(IWR, #)

0’ 8. 01 NRITE(INR,*)'*************************************************'
) 9. 01 WRITE(IWR, #)’ VELOCITY = WV, 'Rt/s ANGLE = ‘, A#180/ (4#ATAN(1.))
§87?.8i WRITECIWR, #)

)072. 01 WRITE(IWR, #) 'THE TOTAL LIFT PRODUCED IS ‘,CLTOT, ‘(1lbs)’

3 3. 01 WRITE(IWR, #) ‘THE TOTAL DRAG IS ‘. CDTOT, ‘(1lbs) !

)@ 4. 01 Do 18 I= 1, N

0s3. 02 POCL(I,MLOOP) = CL(I)
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POCD(I,MLOOP) = CDI(I)
CONTINUVE

CALL SECT(N, TEST., TH, CL, CDI. C, AIN, RHO, PY, PZ, MXL., V, VY, VZ, MX, B, MY
+MZ, IWR, Y, 2, A, E, 1YY, IZZ, 1YZ, CENP, WTOTS, K, SIG, VEL, ANGLE)

WRITE(IWR, #)'LIFT AND DRAG DISTRIBUTION ALONG WING'’
WRITE(IWR, #)
WRITE(IWR, #) STATION cL CDh ANGLE “

DO 8 % = 1,N

WRITE(IWR, #)I,CL(I),CDICI), AINC(I)#180. /(4. *ATAN(1. ))
CONT INUE

DO ? I = 1,N/2

PS(I) = B/2. -REAL (I)#B/REAL (N)
PLOCI.MLOOP)=VY(]I)

PLO1(I, MLOOP)= VZ(I)

PLO2(I, MLOOP) = MX(I)

PLO3(I, MLOOP) = MY(I)

PLO4(I, MLOOP) = MZ(I).
CONTINUE

CONTINUE

Plots of the lift and drag for no flap

CALL TPLOT(-11,PS1,POCL,N, 52, 4)

CALL TITLE('CL FOR TEST WING')

CALL TLABEL('POSITION FROM CENTERLINE (ftJ’, ‘Cl1 %)

READ(1,#)S

CALL TPLOT(-11.,PS1,POCD: N, 32, 4)

CALL TITLE(’CD FOR TEST WING')

gekB(ILA?gL('POSITION FROM CENTERLINE (£t1’, ‘Cd ")
 ®*

Plots of the internal stress resultants comparing flap and no tlap

CALL TPLOT(-11,PS,PLO, 29, 26, 4)

CALL TITLE('STRESS RESULTANTS Vg')

ggk%({LA?gL('POSITIDN FROM CENTERLINE C(#tl‘, ‘Vy [1lbsl")
)

CALL TPLOT(-11,PS,PLO1, 25, 24, 4)

CALL TITLE('STRESS RESULTANTS Vz ‘)

CALL TLABEL(‘POSITION FROM CENTERLINE C[#t]‘, ‘Vz Clbs]’)

READ(1,%)S

CALL TPLOT(-11,PS, PLO2, 293, 26, 4)

CALL TITLE('STRESS RESULTANT Mx ‘)

geks(ILA?gL('PDSITIDN FROM CENTERLINE Cft)’, ‘Mx [ft-1bs]’)
)

CALL TPLOT(-11,PS, PLO3, 28, 26, &)

CALL TITLE( ‘STRESS RESULTANT M#')

ggk%({LA?gL(’PDSITION FROM CENTERLINE C#tl‘, ‘My [ft-1bsl’)
R

CALL TPLOT(-11.,PS, PLO4, 29, 26. 4)

CALL TITLE(‘STRESS RESULTANT Mz ‘)

CALL TLABEL(‘'POSITION FROM CENTERLINE [#t]’, ‘Mz [ft-1bsl’)

WRITE(1, #) "INPUT 1, AND THEN A THREE FOR ANGLES‘

READ(1, #)85
IF (8 .LT. 2) THEN

CALL TPLOT(-11,VEL.SIG,4.4,1)

CALL TITLE(‘BENDING STRESS AT ROOT AT MAX STRESSED MEMBER')
ELSECALL TLABEL ( ‘VELOCITY #t/s’. ‘STRESS psi’)

call TPLOT(-11, ANGLE, SIG, 4,4, 1)

CALL TITLE('BENDING STRESS AT ROOT AT MAX STRESSED MEMBER ‘)
ENDIgall TLABEL ( ‘ANGLE degs‘, ‘STRESS psi ‘)
WRITE(1, #) ‘WOULD YOU CARE TO'START OVER FOR A NEW WING AT A NEW

.ANGLE OF ATTACK? (1 FOR YES)

READ(1, #)1
IF(1I.EQ. 1) GOTC 9%

WRITE(1, #) ‘“THANK YOU FOR CHOSING McDONALD SOFTWARE SYSTEMS'
CLOSE(UNIT = 66)
STOP

END
CRIGINAL PAGE |5
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### SUBROUTINE TO DETERMINE THE COEFFICIENTS OF THE LIFTING LINE
SUBROUTINE ALPHA(N, DA, A, A1, C, CHORD, B, ANG)
REAL A1 (N, N+1),C(N), ANG(N)

PI = 4 #ATAN(1.)
THETA = REAL(PI/N)
DA = 2 #REAL(DA/N)

DETERMINE THE ANGLE OF ATTACK AND THE CHORD AT EACH SECTION
Do 101 = 1,26

Detemine the RHS of the
A1 (I.N+1) = A-DA#REAL(I)
AL(N-I+1,N+1)=A1(I,N+1)
ANG(I) = A1(I,N+1)

ANG (N-I+1) = A1(I,N+1)
Symmetric airfoil alpha 1lift = O is O

equations for the lifting line

Determine the chord at each position

C(I)= CHORD
C(N-I+1) = C(I)

CONTINUE

T =0.

DO 20 J = _I,N

T = T + REAL(PI/N)

DO 30 I = 1,N

The specific point that is being looked at

The coefficients of the point being examined.
?1(J,I)-2.*B/(PI*C(J))ﬁSIN(REAL(I*T))+REAL(I*SIN(REAL(I*T)))/SIN(T

CONTINUE
CONTINUE

RETURN
END

SUBROUTINE TO FIND THE SOLUTIONS TO THE SIMULTANEOUS EQUATIONS

SUBROUTINE SIM(N. A1, B, V, CHORD, AIN, @, CL.,CDI, BCL, CLTOT, CDTOT
.+ TEST. X, LOC, TH, C. ANG, CDO)

REAL A1 (N, N+1), X(N), G(N3, CL(N), CDI(N), AIN(N), C(N), ANG(N)
INTEGER LOC(32)

CLTOT= O.

RHO = . Q023769

AIND = O.

H = 0

DO 101 = 1,N

X(I) = A1(I,N+1)

CONTINUE

PI = 4, #ATAN(1.)

gALLoSIMEG(Ai.X.N.N.LOC) GoICHNEL PAGE 1S
=

CDTOT = O. OF POOR QUALITY

CLTOT = O.

DO 40 I = 1,N

T =T + PI/REAL (N)

AIND = O.

H= 0.

DO S0 v = 1,N

H = H +X{JIRSIN(REAL (J#T))

AIND = AIND + R (X(J) ) SIN(REAL (J#T))/SIN(T)

EAL (J)»
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30 CONTINUE

ANGLE OF ATTACK DF EACH SECTION
AIN(I) = ANG(I)>—AIND
ULATION AT EACH SECTION
= 2 #B#VEH
= 2#Q(I)/(V%C(1))
) =CDO+ 2. 7/(V#B#CHORD)*AIN(I)#G@(I)*B/REAL (N)
CLTOT + CL(I)%* S#RHO#V*#2#B#CHORD/N
CDTOT + CDI(CI)*. S#RHO#V##2#B#CHORD/N

(elelglslelr]g]
Z A~

QUror ~m~

E = 0.
DO 60 I = 2,N
E = E+REAL(I)#(X(I)/X(1))%n2

CONT INUE
RETURN
END

Subroutine to determine section properties and the direct stress

SUBROUTINE SECT(N, TEST, TH, CL, CDI. C, AIN, RHO, PY, PZ, MXL., V, VY, VZ,

.MX, B MY, MZ, IWR, Y, Z, A, E, 1YY, I1ZZ, 1YZ, CENP, WTOTS, K, SIG, VEL, ANGLE)

REAL CL(N),CDI(N),C(N), AIN(N).PY(N/2), PZ(N/2):HXL(N/2).VY(N/2)
REAL VZ(N/2),MX(N/2), MY (N/23, MZ(N/2), Y(14), Z(14), AZ(14), E(14)
REAL IYY(14).IZZ(14).IYZ(14) MXOLD,HYDLD.HZOLD:SIO(4).VEL(4)
REAL ANGLE(4)

INTEGER Pé6, POS

DIST = ZB - CENP

Calculate the scction properties relative to the centroid
WRITE(1, %) ‘ZBAR =, Z

WRITE(1, #) ‘'YBAR = ', YB

DO 2% I = 1.,K

YYT = YYTH+E(I)/EREF#AZ(I)#(Z2(1)—-1B)#n2+IYY(1)

12T = ZZT+E(I)/EREF#AZ(I)#(Y(I)-YB)##2+12Z(1)

YZT = YIT+E(I)/EREF#AZ(I)#(Y(I)-YB)®(Z(I1)-ZB)+1IYZ(I)
CONTINUE

Cchulatc bending moments due to the loading
Q SARHO#VERZ
NEIOHT PER SPAN (lbs/#t) = WTOTS

DO 30 I = 1,N/2

PY(I) = O*C(I)*CL(I)*CDS(AIN(I))+O*C(I)*CDI(I)*SIN(AIN(I))
.—NTDTS*CDS(AIN(I)

PZ(I) = QuC(I)#CL(I)#SINCAIN(I))-Q#C(I)#CDI(I)®COS(AIN(I))
.-NTOTS*SIN(A!N(I))

FORCEY= Q#C(I)#CL(I)®COSCAIN(I))+Q#C(I)#CDI(I)*SINCAIN(I))
FORCEZ= Q#C(I)#CL(I)#SINCAIN(I))-G#C(I)®CDIC(I)*COS(AIN(I))
ACMX = O. 1#GRC(I)%n2

MXL(I)=FORCEZ#(DIST)-FORCEY#*(YB)+ACMX

g AL PAGE 1S
OF FOOR QUALITY
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Determine internal stress resultants

DX = B/N
DO 33 I = 1.N/2-1

IF(I .NE. 1) THEN
vVYOLD
vZoLD

<

g

[+
(RN |
000 X<

ENDIF
WRITE(1, #} ‘MXOLD
= VYOLD +

= ¢
N
w]
r
o
nu

ENDIF
MZ(I) = MZOLD
MY(I) = MYOLD

CONTINUE

‘MX=7, MX(ID)

Stress resultants have now been calculated along the “beam”

WRITE(IWR, #)

WRITE(IWR, #)’ WING POSITION CROSS SECTION MEMBER

DIRECT STRESS’

READ(1, #) POS

WRITE(1, #) ‘AT SECTION‘, POS: ‘WHAT INDIVIDUAL MEMBER IN THE STRUCTUR
.E IS TO BE ANALYZED?’

Y

"DETERMINE STRESS AT A SELECTED POINT ALONG THE WING

WRITE(1, #) ‘ENTER A NUMBER FROM 1 TO ‘,N/2-1,  ALONG THE WING’

WRITE(1, #) ‘ENTER A NUMBER FROM 1 TO ‘, K, ' FOR A SPECIFIC MEMBER,

.OR ENTER 30 FOR ALL. "’

READ(1, #)P&

P& = 335
IF(P& .GT. 49) THEN
NiL =1
N2 = K
ELSE
Ni = Pé
N2 = Pé
ENDIF
DO 60 I = N1, N2
EASEL = (MZ(POS)#YYT+MY(POS)*YZT)/(YYT#ZIT-YZT#%2)
EASE2 = (MY(POS)#ZZT+MZ(POS)#YZIT)/(YYTHIIT-YZIT##2)
SIGMA = ~-EASE1#E(I1)/EREF#(Y(I)~YB)+EASER#E(I)/EREF#(Z(1)-ZB)
SIGMA = SIGMA/144.
IF (I .EQ. 2) SIG(l) = SIGMA

WRITE(IWR, #)P0OS, I,

CONTINUVE
WRITE(I

RETURN
END

L YCI), Z(1), SIGMA

CRUCINAL PAGE IS
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#*1 v************************************ 236 3 3% 3% 3% %4 #

CILOCITY = 30. 0000 ft/s ANGLE = 2. 00000
THE TOTAL LIFT vxoocomo 1S &. 72936 (lbs)
TI'= TOTAL DRAG IS 499353 (lbs)
v 1= |o.~ooumﬁ Vi= -2. 874631E-02MX= 7. 972394E-02
V' 2= -0. 197349 Vi= -8 772963E-02MX= 0. 157236
vy 3= -0. 267263 V= -8. 676833E-02MX= 0. 232810
vy 4= -0. 3214636 Vim -0. 115763 M= 0. 306724
Vv S= -0. 363042 VZi= -0. 144644 MX= 0. 379237
W &= -0. 393629 Vi=s -0. 173386 MX= 0. 450582
VY 7= -0. 413308 VIm= -0. 201974 MX= 0. 520999
vY 8= .-0. 429649 Vim -0. 230413 MX= 0. 590836
VA 9= -0. 437971 Vi= -0. 258714 MX= 0. 459434
Vv 10= -0. 441344 V= -0. 286891 MX= 0. 727830
V', 11= -0. 440647 Vi= -0.3149%9 MX= 0. 795759
vy 12= -0. 436596 VIm -0. 342932 MX= 0. 863319
VY 13= -Q. 429773 V= -0. 370824 MX= 0. 930573
V' 14= -0. 420664 V= -0. 398646 MX= 0. 997579
v 18= -0. 409657 Vi= -0. 426409 MX= 1. 06437
VY 16= -0. 397078 Vi= -0. 454122 MX= 1. 13099
vy 17= -0. 383200 Vi= ~-0. 481792 MX = 1. 19746
VA 18= -0. 368251 Vim ~0. 309427 MX= 1. 26382
Wy 19= -0. 352426 V= -0. 537033 MX= 1. 33008
Vv 20= -0. 3395891 V= -0. 564613 MX= 1. 39626
vy 21= -0. 318794 Vi= -0. 392178 MX= 1. 46238
vy 22= -0. 301263 V2= -0. 619726 MX= 1. 528493
v 23= -0. 283418 V= -0. 647264 MX= 1. 59449
VA 24= -0. 268348 Vi= -0. 674794 MX= 1. 66030
VY 2%= -0. 247216 V= -0. 702321 MX= 1. 72650
| INGC POSITION CROSS SECTION zmzmmx Y Z DIRECT STRESS
29 1 320000E-02 -0. 245000 14. 7497
25 2 nn.wmoooom|on -0. 245000 -22. 6973
25 3 1. 190000E-02 -2. 380000E-02 10. 0193
25 4 0. 238000 -0. 857000 0. 249879
L1FT AND DRAG DISTRIBUTION ALONG WING
STATION cL CD ANGLE
i 3. 030080E-02 3. S00281E-02 0. 276317
2 S. 810238E-02 3. 301032E-02 0. 53296839
3 8. 294056E-02 3. 502084E-02 0. 752689
4 0. 103484 3. S03277E-02 0. 9436469
s 0. 121127 3. 504490E~-02 1. 10456
b 0. 135829 3. 508646E-02 1. 238%8
7 0. 147979 3. 506701E-02 1. 34941
8 0. 157986 3. 507639E-02 1. 44067
9 0. 166210 3. 50845 5E-02 1. 51566
10 0. 172964 3. 3091 56E-02 1. 37728
11 0.1785317 3. S09733E-02 1. 62789
12 0. 183089 3. S10299E-02 1. 66958
13 0. 186860 3. 5106846E~-02 1. 70397
14 0. 189977 3. 311046E-02 1. 73239
19 0. 192598 3. 511348E-02 1. 75592
16 0. 194693 3. 8114601E-02 1. 77542
17 0. 196466 3. 511813E-02 1. 79196
18 0. 197928 3. 911990E-02 1. 80489
19 0. 199130 3. 912134E-02 1. 81583
20 0. 200109 3. S12255%E-02 1. 82478
21 0. 200894 3. S12352E-02 1. 83194
22 0.201509 3. 912427E-02 1. 83753
23 0.201971 3. 512485E-02 1. 84176
24 0. 202292 3. S12924E-02 1. 84469
29 0. 202481 3. 512%48E-02 1. 84642
26 0. 202544 3. 5125395E-02 1. 84699
27 0. 202481 3. 312%48E-02 1. 84642
28 0. 202292 3. 512924E-02 1. 84469
29 0. 201971 3. 912483%E-02 1. 84176
30 0. 201509 3. 812427E-02 1. 83753
31 0. 200894 3. 5123%2E-02 1. 83194
32 0. 200109 3. S12295E-02 1. 82478
33 0. 199130 3. 912136E~-02 1. 819589 PAGE 1S
34 0. 197928 3. 511990E-02 1. 80489 ozﬂ.ZPr
33 0. 196466 3. 51181 3E-02 1. 79196 POOR oc>r24
36 0. 194696 3. 5114601E-02 1. 77942 OF
37 0. 192998 3. 511348E-02 1. 75993
38 0. 189978 ‘3. 911046E-02 1. 73240



DIRECT STRESS

39 0. 184861 3. 510686E-02 1. 70397
40 0. 183089 3. 510259E-02 1. 66938
41 0. 1783518 3. 809733E-02 1. 62790
42 0. 172963 3. 5091356E-02 1. 37726
43 0. 166211 3. 50843 3E-02 1. 91367
44 0. 137988 3. 507439E-02 1. 440469
45 0. 147981 3. 306701E-02 1. 34943
446 0. 133827 3. 50864 4E-02 1. 23861
47 0.121130 3. 904490E-02 1. 10439
48 0. 1034886 3. 303277E-02 0. 943703
49 8. 294497E-02 3. 30208 3E-02 0. 782728
30 S. 810761E-02 3. 301033E-02 0. 529886
S1 3. 030701E-02 3. 500281E-02 0. 276373
Se2 6. 680464E-06 3. 500000E-02 6. 830189E-03
S3 03696363636 W30 36 0TI I I I I I IR R RN RN R
VELOCITY = 75. 0000 ft/s ANGLE = 2. 00000
T+ TOTAL LIFT PRODUCED IS 15. 1411 (lbs)
T+ TOTAL DRAG IS 3. 28393 (lbs)
A 1= -6. 473903E-02VI= =&, 340687E-02MX= 0. 179379
Y 2= -8. 220370E-02VZ= -0. 126383 MY = 0. 353781
Y 3= -5. 860879E-02Vi= -0. 189283 MX= 0. 323823
A 4= -9. 991424E-03VI= -0. 251238 MX= 0. 690128
A 9= 8. 76664L6E-02VI= -0. 312%46 MX= 0. 833284
Y b= 0. 199722 Vim -0. 373123 MXm 1.01381
Y 7= 0. 331822 VZim -0. 433042 MX= 1. 17216
A B= 0. 480410 V= -0. 492362 MXm 1. 32871
A = 0. 642343 VZi= -0. 331157 MX= 1. 48377
Y 10= 0. 813804 Vi= -0. 609496 MY = 1. 63762
Y 1= 0. 998221 Vim -0. 667444 MX= 1. 79046
Y 12= 1. 18818 V= -0. 723038 MY 1. 94247
A 13= 1. 38437 V= -0. 782390 MX 2. 09379
A 14= 1. 38371 V= -0. 839483 MX= 2. 24434
Y 15= 1. 79131 Vi= -0. 896373 MX= 2. 39483
Y 16= 2. 00043 V= -0. 933097 MX= 2. 54472
A 17= 2. 212391 Vi= -1. 00968 MX= 2. 69429
A 18= 2. 42698 VZ= -1.06614 MX= 2. 84339
') 19= 2. 64341 V= -1. 12291 MX= 2. 99268
/Y 20= 2. 86143 Vi= -1. 17880 MX= 3.14139
Al 21= 3. 08073 V= -1. 235902 MX= 3. 29036
A 22= 3. 30102 Vi= -1. 29120 MX= 3. 43902
N 23= 3. 32200 Vi= -1. 34734 MXm= 3. 38760
Y 24= 3. 74344 Vi= -1. 40345 MX = 3. 73613
Y 25= 3. 96512 Vis= -1. 43936 MX= 3. 88464
wiNG POSITION CROSS SECTION MEMBER Y Y4
23 1 9. 520000E-02 -0. 245000
23 2 -2. 380000E-02 -0. 243000
23 3 1. 190000E-02 ~-2. 380000E—-02
23 4 0. 238000 ~-0. 857000
_IFT AND DRAG DISTRIBUTION ALONG WING
STATION cL CcD ANGLE
1 3. 030079E-02 3. S00281E-02 0. 276317
2 S. 810238E-02 3. S01032E-02 0. 529839
3 8. 234036E-02 3. S02084E-02 0. 792689
4 0. 103484 3. S03277E-02 0. 9436469
o 0. 121127 3. 304490E-02 1. 10456
& 0. 135623 3. S05646E-02 1. 23838
7 0. 147979 3. 306701E-02 1. 34941
8 0. 137986 3. 307639E-02 1. 44067
? 0. 166210 3. 50843 3E-02 1. 31966
10 0. 172964 3. S09196E-02 1. 37723
11 0.178317 3. 509733E-02 1. 6278%
12 0. 183089 3. S10259E-02 1. 66938
13 0. 186860 3. 310486E-02 1. 70397
i4 0. 189977 3. 511044E-02 1. 73239
13 0. 192358 3. 511348E-02 1. 79392
146 0. 1944699 3. 311601E-02 1. 77942
17 0. 196466 3. 311813E-02 1. 79136
18 0. 197928 3. 511990E-02 1. 80489
19 0. 199130 3. 512136E-02 1. 81383
20 0. 200109 3. 312233E-02 1. 82478
21 0. 200874 3. 512352E-02 1. 83194
22 0. 201309 3. 512427E-02 1. 83733
23 0. 201971 3. 512483E-02 1. 84176
24 0. 202292 3 S12%24E-02 1. 84469

~36. 7645
74. 30351
-14. 0347
-17. 8237

ORIGIHAL PAGE IS
OF POOR QUALITY



25  0.202481 3. 512548E-02 1. 04642
26 0. 2023544 3. S12933E-02 1. B4499
27 0. 202482 3. S12948E-02 1. 84642
28 0. 202292 3. 512324E-02 1. 84469
29 0.201971 3. 512483E-02 1. 84176
30 0. 201309 3. 512427E-02 1. 83735
31 . 200894 3. 31235KE-02 1. 83194
32 0. 200109 3. 51223%5E-02 1. 82478
33 0. 199130 3. 312136E-02 1. 815895
34 0. 1979<8 3. 511990E~-02 1. 80489
3s 0. 196466 3. 911813E-02 1. 79156
36 0. 194696 3. 911601E-02 1. 77542
37 0. 1923358 3. 511348E-02 1. 79993
38 0. 189978 3. 591104 46E-02 1. 73240
39 0. 186861 3. 510468B6E-02 1. 70397
40 0. 183089 3. 510289E-02 1. 66938
41 0.178318 3. S09733E-02 1. 62790
42 0. 172963 3. S09186E-02 1. 97726
43 0. 166211 3. 30843 3E-02 1. 91367
44 0.187988 3. 307639E-02 1. 44069
43 0.147981 3. 506701E-02 1. 34943
446 0. 135827 3. S05646E-02 1. 23861
47 0.121130 3. 304490E-02 1. 10459
48 0. 103488 3. 303277E-02 0. 243703
49 8. 254498E-02 3. S02083E-02 0. 732728
350 9. 810761E-02 3. S01033E-02 0. 329886
o1 3. 030701E-02 3. S00281E-02 0. 276373
32 6. 680463E-06 3. 300000E-02 &. 830189E-05
3 v***********************************************
VELOCITY = 100. 000 ft/s ANGLE = 2. 00000
THE TOTAL LIFT PRODUCED IS 26.9174 (lbs)
*m TOTAL DRAG IS 5. 83813 (l1bs)
N i= -2. umowﬂﬂmIOOCNl -0.111931 MX= 0. 318896
<< 2= 7. 899480E-02VI= -0. 222988 MXm 0. 628944
vy 3= 0. 233307 Vim= -0Q. 332731 MX= 0. 931240
v 4= 0. 430078 V= -0. 440991 MX= 1. 2268%
v S= 0. 718639 Vi= -0. 947603 MX= 1. 91699
Ve o= 1. 03041 V= -0. 6827959 MY 1. 80233
vY 7= 1.37780 V= -0. 756337 MX= 2. 08383
vy 8= 1. 75449 VZ= -0. 8392092 MX= 2. 36214
v = 2. 13526 Vi= -0. 92603577 MX= 2. £3782
vf 10= 2. 37381 Vi= -1.06114 MX= 2. 91132
vy 11i= 3. 01264 VZ= -1. 16092 MX= 3. 18304
vy 12= 3. 46287 V= -1, 26003 MX= 3. 45327
v 1 3= 3. 92417 V= -1. 35858 MX= 3. 72229
tr 14= 4. 39463 V= ~1. 48663 MX= 3. 29030
AS 15= 4. 87267 vi= -1. 35433 MX= 4. 29747
vy 16= 9. 38699 EA -1. 69166 M X 4. 52399
e 17= S. 84630 V= -1.74872 MX= 4. 78989
o 18= &. 34029 VZ= -1.843554 MX= 5. 05328
Cf 19= &. 83739 VZ= -1. 94217 MX= 5. 32032
vy 20= 7.33772 V= -2. 03863 M S. 383503
VA4 21= 7. 84010 V= -2. 13%00 MX= 5. 84992
4 22= 8. 34422 V= -2. 23129 MX= 6. 11381
o 23= 8. 84999 Vim -2. 32743 MX= 6. 37793
vy 24= <. 35978 VZi= -2. 42397 MX= 6. 64201
vy 25= Q. 86237 VZm -2. 91969 MX= 6. 70602
JING POSITION CROSS mmndnoz Zmzumz Y O 4 DIRECT STRESS
29 . S20000E-02 -0. 243000 -108. 884
23 n In 380000E-02 -0. 243000 210. 108
23 3 1. 190000E-02 -2. 380000E-02 -47. 7103
25 4 0. 238000 -0. 837000 -43. 1313
LIFT AND DRAG DISTRIBUTION ALONG WING
STATION cL cD ANGLE
1 3. 030080E—-02 3. S00281E-02 0. 276317
= 5. 810238BE-02 3. 501032E-02 0. 529839
3 8. 2%4036E-02 3. 302084E-02 0. 7952689
4 0. 103484 3. S03277E-02 0. 943669
S 0. 121127 3. 504490E-02 1. 10456
& 0. 139823 3. 30364 6E-02 1. 23898
& 013738 3 3050996-02 1l 240e7
. : - : ORIGINAL PAGE IS
9 0. 166210 3. 508495 35E-02 1. 313646 .
10 0. 172964 3. 5091 36E-02 1. 377298 OF POOR QUALITY
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LIFT AND DRAG DISTRIBUTION ALONG WING

STATION CL CcD ANGLE
1 3. 030079E-02 3. 300281E-02 0. 276317
2 S5. 810238E-02 3. 301032E-02 0. 329839
3 8. 294036E-02 3. 902084E-02 0. 732689
4 0. 103484 3. 903277E~-02 0. 94346469
3 0.121127 3. 504470E-02 1. 10436
& 0. 133823 3. 50964 46E-02 1. 23838
7 0. 147979 3. 904701E~02 1. 34941
8 0. 137986 3. 9074639E-02 1. 44067
? 0. 166210 3. 308433E-02 1. 91566
i0 0. 172964 3. 3091 34E-02 1. 97723
11 0.178517 3. 309733E-02 1. 62789
12 0. 183089 3. 510239E-02 1. 646938
13 0. 186860 3. S10686E-02 1. 70397
14 0. 189977 3. 311044E-02 1. 73239
13 0. 192338 3. 511348E-02 1. 73392
16 0. 1944699 3. 511601E-02 1. 773542
17 0. 196466 3. 511813E-02 1. 79136
ig 0. 197928 3. 311990E-02 1. 8048%
19 0. 199130 3. 912136E-02 1. 819589
20 0. 200109 3. S12235E-02 1. 82478
21 0. 200824 3. 212332E-02 1. 83194
22 0. 201309 3. 912427E-02 1. 83733
23 0. 201971 3. 9124835E-02 1. 84176
24 0. 202292 3. 312324E-02 1. B4446%
23 0. 202481 3. 91294B8E-02 1. 84642
26 0. 202344 3. S12533E-02 1. 84599
27 0. 202482 3. 512948E-02 1. 84642
29 0. 202292 3. S12324E-02 1. 84449
29 0.201971 3. 912485E-02 1. 84176
30 0. 201309 3. 312427E-02 1. 83733
31 0. 200874 3. 812352E-02 1. 83194
32 0. 200109 3. 312233E-02 1. 82478
33 0. 199130 3. 3121 34E-02 1.81383
34 0. 197928 3. 311990E-02 1. 80489
3% 0. 196446 3. 911813E-02 1. 79136
36 0. 1944696 3. 3114601E-02 1.77342
37 0. 192338 3. 311348E-02 1. 73393
38 0. 1899786 3. 911044E~-02 1. 73240
39 0. 186861 3. 5104686E-02 1. 70397
40 0. 183089 3. 310239E-02 1. 66938
41 0. 178318 3. S09733E-02 1. 62790
42 0. 172963 3. 309134E-02 1. 37726
43 0. 166211 3. S08435E-02 1. 91367
44 0. 137988 3. 5074639E-02 1. 44069
45 0. 147981 3. 506701E-02 1. 34943
46 0. 135827 3. 5056446E-02 1. 23861
47 0.121130 3. S04490E-02 1. 10439
48 0. 103488 3. 903277E-02 0. 943703
49 8. 294496E-02 3. 50208 3E-02 0. 752728
20 S.810761E-02 3. 501033E-02 0. 329886
91 3. 030701E-02 3. SO0281E-02 - 0. 276373
o &. 680463E-06 3. 500000E-02 &. B30189€-03
e et Y YRR IR A S RS R e el il s a s Ll Ly
VELOCITY = 460. 0000 ANGLE = 3. 00000
THE TOTAL LIFT PRODUCED IS 14. 3354 (lbs)
THE TOTAL DRAG IS 2. 10836 (lbs)
VY i= -b. 79366FE-QRVI= -4. 097214E-02MX= 0.112103
A 2= -9. 049203E-02VZ= -8. 16510SE-02MX= 0. 219381
vy 3= -7. 362996E-Q2ViI= -0. 121627 MXm 0. 322413
vy 4= =2 329891E-QRVI= -0. 160473 MY = 0. 421799
vy 5= S. 319038E-02VZ= -0. 198712 MX = 0. 918090
A &= 0. 136946 V= -0. 239747 MX= 0. 611804
vy 7= 0. 277933 VZm -0. 271843 MX = 0. 703374
vy 8= 0. 414738 V= -0. 307096 MX= 0. 793172
A 9= 0. 3464333 V= -0. 341600 MX= 0. 881507
vy i0= 0. 723006 Vi= -0. 373437 MX= 0. 968637
vy 1i= 0. 894238 Vi -0. 408738 MY (= 1. 03477
vy 12= 1. 07074 V= -0. 441383 MX= 1. 14009
vy 13= 1. 29320 V= -0. 474010 MX= 1. 22472
vy 14= 1. 44060 Vim -0. 306093 MX= 1. 30879
vy 15= 1. 63209 VZ= -0. 337893 MX= 1. 39240
A 16= 1. 82696 V= -0. 369431 MX= 1. 47362
vy 17= 2. 02464 VZm -0. 600807 MX= 1. 55832
vy 18= 2. 22462 V= -0. 631995 MX= 1. 641193

|
|



VY 19= 2. 42630 Vin -0. 663046 MX= 1. 72357
vy 20= 2. 62991 VZ= -0. 693983 MX= 1. 80381
vy 21= 2. 83492 Vi= -0. 724831 MX = 1. 88792
vy 22= 3. 04008 VZm -0. 733610 MX 1. 96992
A 23= 3. 244631 VZi= -0Q. 786337 MX= 2. 03184
vy 24= 3. 43298 Vim -0. 817032 MY = 2. 13370
vy 25= 3. 65987 V= -0.847711 MX= 2. 21533
WING POSITION CROSS -SECTION MEMBER ¥- DIRECT STRESS
29 1 S320000E-02 -0. 245000 ~-36. 4304
23 2 -2 380000E-02 -0. 243000 70. 4807
23 3 1. 190000E-02 -2. 390000E-02 -13. 8823
29 4 0. 238000 -0. 857000 -14. 3790
LIFT AND DRAG DISTRIBUTION ALONG WING
STATION CcL D ANGLE
1 4. 343134E-02 3. 300631E~-02 0.414478
2 8. 713376E-02 3. J02324E-02 0. 794759
3 0.123811 3. 9044691E-02 1. 12903
4 0. 139226 3. 307374E-02 1. 41330
9 0. 181692 3. 910103E-02 1. 63684
é 0. 203738 3. 912704E-02 1. 83788
7 0. 221968 3. 313080E~02 2. 02412
8 0. 2346979 3. 317188E-02 2. 161018
? 0. 249319 3. 919024E-02 2. 27349
10 0. 239446 3. 320601E-02 2. 36588
11 0. 267776 3. 32194S5E~-02 2. 44183
12 0. 2744633 3. J23084E-02 2. 30437
13 0. 280290 3. S240435E-02 2. 33399
14 0. 284946 3. J24834E-02 2. 39839
13 0. 288836 3. 323334E-02 2. 63388
16 0. 292043 3. 926103E-02 2. &6313
17 0. 294698 3. S26380E-02 2. 68734
18 0. 296891 3. JR&F77E-02 2. 70734
19 0. 298694 3. 327306E-02 2. 72378
20 0. 3001463 3. 32737 3E-02 2. 73717
21 0.301341 3. 327793E-02 2. 74791
22 0. 302263 3. 327962E-02 2. 73633
23 0. 302956 3. S28091E-02 2. 76264
24 0. 303438 3. 328181E-02 2. 76703
23 0. 303722 3. S28233E-02 2. 76963
26 0. 303816 3. S528231E-02 2. 77048
27 0. 303722 3. 328233E-02 2. 76963
28 0. 303438 3. S28181E-02 2. 76704
29 0. 302956 3. 92809 1E-02 2. 76264
30 0. 302263 3. S27962E-02 2. 73633
31 0.301341 3. 3@7793E~-02 2. 74791
32 0. 300163 3. 327576E-02 2. 73717
33 0. 298693 3. S27306E-02 2. 72378
34 0. 296892 3. JRELFT77E-02 2. 70734
39 0. 294698 3. SR6580E-02 2. 68734
b6 0. 292043 3. J26103E-02 2. 66313
37 0. 288837 3. S29934E-02 2. 63389
38 0. 284946 3. J24834E-02 2. 39839
39 0. 28029 3. 32404 3€E- 2. 39996
40 0. 274634 3. 3230835E-02 2. 30437
41 0.267777 3. O21946E-02 2. 44184
42 0. 299448 3. 2E-02 2. 36989
43 0. 249316 3. S19024E-02 2. 27330
44 0. 236981 3. 317188E~-02 2. 16103
43 0.221971 3. 51 OE- 2. 02415
46 0. 203741 3. 312704E-02 1. 83791
47 0. 181696 3. 310103E-02 1. 656488
48 0. 1335231 3. 307374E-02 1. 41933
49 0.123817 3. J04691E-02 1. 12909
90 8. 716137E-02 3. S02324E-02 0. 794830
91 4. 346036E-02 3. 300631E-02 0. 414360
o 1. O0R069E~-03 3. 300000E~-02 1. 011722E-04
tanad el s s s s T I TS A LA R LT LT L LT RY LY T T Ay
VELOCITY = 60. 0000 ft/s ANGLE = 6. 00000
THE TOTAL LIFT PRODUCED IS 29. 0708 (lbs)
THE TOTAL DRAG IS 2. 14417 (lbs)
vy i= 8. 830852E-03VZ= -3. 788638E-02MX= 0. 1038646
A 2= 0.108413 V= =7. §79335E-02MX= 0. 197797
vy 3= 0.286710 - ViI= -0. 109324 MX= 0. 2828684
A4 4= 0. 331884 Vi= -0. 136813 MX= 0. 360299



DIRECT STRESS

vy 5= 0. 833049 Vim -0. 159144 MX= 0.431177
vy b= 1. 18063 Vim -0. 176346 MY= 0. 496393
vY 7= 1. 56633 Vi= -0. 189436 MX= 0. 557344
vY B= 1. 98388 V= -0. 198316 MX= 0. 614323
A = 2. 42706 VZ= -0. 203697 MX= 0. 668151
vy 10= 2. 89143 V= -0. 206067 Mx= 0. 719374
vY 11= 3. 37328 Vi= -0. 209868 MX= 0. 768443
vy 12= 3. 86947 V= -0. 203488 MX= 0. 813732
vy 13= 4. 37732 VZ= -0. 199269 MX= 0. 861343
vy 14= 4. 89336 Vi= -0. 193489 MX= 0. 906133
vy 15= 8. 42132 V= -0. 186407 MX= 0. 249709
vy 16= 8. 93400 V= ~0. 178229 MX= 0. 992442
A 17= 6. 49223 Vi= -0. 169133 MX= 1. 03448
A 18= 7. 03504 Vi= -0. 139280 MX= 1. 079593
Ad 19= 7. 38159 VZm -0. 148798 MX= 1. 11692
vy 20= 8. 13118 Vim -0. 137804 MX = 1. 19733
vy 21i= 8. 68317 Vi= -0. 126407 MX= 1. 19783
vy 22= ?. 23701 VZ= -0.114693 MY = 1. 23790
vy 23= ?. 79220 VZ= -0. 102731 MX= 1. 27779
vy 24= 10. 3483 V= -9. 06397 1E-02MX= 1.31738
vy 29= 10. 9048 V= -7.849430E-02MX= 1. 35732
WING POSITION CROSS SECTION MEMBER Y 4
29 1 9. 520000E-02 -0. 245000
23 2 ~-2. 380000E-02 ~0. 245000
29 3 1. 190000E-02 ~2. 380000E—-02
25 4 0. 238000 -0. 857000
LIFT AND DRAG DISTRIBUTION ALONG WING
STATION CL cD ANGLE
1 9. 090269E-02 3. 502328E-02 0. 828935
2 0. 174308 3. 309299E~-02 1. 58932
3 0. 247622 3. 818766E-02 2. 23807
4 0.310432 3. S29499E-02 2. 83100
S 0. 363383 3. 54041 3E-02 3. 31368
é 0. 407476 3. 35081 8€-02 3. 71376
7 0. 443936 3. 360320E-02 4. 04824
8 0. 473939 3. 9687354E-02 4. 32201
9 0. 498629 3. 576098E-02 4. 84497
10 0. 518893 3. 582408E-02 4. 73176
11 0. 5333931 3. 587783E-02 4. 88367
12 0. 549266 3. 992338E-02 3. 00874
13 0. 360381 3. 596181E-02 S. 11191
14 0. 569932 3. 999417E-02 9. 19718
13 0. 377673 3. 602136E-02 S. 286777
14 0. 584086 3. 604417E-02 S. 32623
17 0. 389396 3. 606324E-02 S. 37467
18 0. 393783 3. 607912E-02 S. 41468
19 0. 597388 3. 6092R27E-02 S. 44733
20 0. 600323 3. 610303E~-02 S. 47434
21 0. 602682 3.611171E-02 S. 49383
22 0. 604327 3. 611833E-02 3. 91263
23 0. 6039212 3. 612366E-02 S. 52928
24 0. 606876 3. 612724E-02 S. 33407
23 0. 607444 3. 612935E-02 3. 93923
268 0. 6074631 3. 613003E-02 3. 34096
27 0. 607444 3. 612933E~-02 3. 83923
28 0. 606876 3. 612724E-02 8. 33407
29 0. 6037912 3. 612364E-02 S. s23%z28
30 0. 604327 3. 6118353E-02 3. 51263
31 0. 602682 3.611171E-02 S. 493983
32 0. 600326 3. 610304E-02 9. 47434
33 0. 897389 3. 609227E-02 S. 44736
- 34 0. 593783 3. 607912E-02 3. 41448
39 0. 589396 3. 606324E-02 S. 37468
36 0. 384086 3. 604417E-02 S. 32626
37 0. 977674 3. 602137E-02 S. 26778
38 0. 369933 3. 399417E-02 3. 19719
39 0. 3605982 3. 596182E-02 S. 11192
40 0. 349268 3. S92339E-02 S. 00873
41 0. 5339993 3. 587793E-02 4. 88369
42 0. 518896 3. 982409E-02 4. 73179
43 0. 498632 3. 3746098E-02 4. 34701
44 0. 473963 3. 5687953E-02 4. 32203
43 0. 443942 3. 360321E-02 4. 04829
46 0. 407483 3. 35081 9E-02 3. 71982
47 0. 363392 3. 340417E-02 3. 31376
48 0. 310443 3. S29300E-02 2. 83110

e ——— ——— et € R e

-137. 368
248. 913
-70. 1603
-38. 7369



49 0. 247633 3. 318768E-02 2. 23819
30 0. 174323 3. 909300E-02 1. 38966
o1 ?. 0921 12E-02 3. S02929E-02 0. 829121
32 2. 004139E-03 3. S00000E-02 2. 023444E-04
T Ty Yy Y Y R AR R AR L R e At L Ll SRR a Rt d gl
VELOCITY = 60. 0000 ft/s ANGLE = ?. 00000
THE TOTAL LIFT PRODUCED IS 43. 5062 (lbs)
‘HE TOTAL DRAG IS 2. 20383 (lbs) _
'Y i= 8. 859194E~-02ViI= -3. 70591 8E-02M X = 9. 542280E-02
vY 2= 0. 307097 VZm ~b. 606840E-02MX= 0. 173321
vy 3= 0. 646426 V= -8. 408343E-02M )= 0. 241843
‘'Y 4= 1. 08369 VI=m - -8.971044E-O02M)X= 0. 296118
'Y 5= 1. 60849 Vi= -8. 294143E-02MX= 0. 340064
'Y b= 2. 20046 Vim -6. 44051 7E-02MX= 0. 373278
vy 7= 2. 84939 VZm -3. 5164605E-Q2MX= 0. 403177
vy 8= 3. 94308 Vim 3. 5349031E-O3MX= 0. 424989
'Y = 4. 27911 Vi= 3. 0S0237E-02MX= 0. 441752
'Y 10= 3. 04439 Vi= 0. 104331 MX= 0. 454333
vY i1= S. 83971 Vim 0. 164386 MX= 0. 463437
vy 12= &. 64849 V= 0. 229747 MY 0. 469713
Y 13= 7. 47862 VZIm 0. 299219 M X 0. 473393
i 14= 8. 32324 Vi= 0. 372322 MX= 0. 4735501
'Y 15= 9.179895 Vi= 0. 448474 MX= 0. 473773
vy 16= 10. 0464 Vim 0. 527187 MX= 0. 474483
vY 17= 10. 9211 V= 0. 608034 MY= 0. 472470
Y i8= 11. 8027 V= 0. 690637 MY = 0. 469326
Y 19= 12. 6897 V= 0.774742 M= 0. 463420
vY 20= 13. 3812 VZm 0. 860017 MX= 0. 460897
vy 2i= 14. 47463 Vi= 0. 946240 MX= 0. 433883
'Y 22= 15. 3741 VZ= 1. 03319 MY = 0. 430492
'Y 23= 16. 2739 Vi= 1. 12068 MX = 0. 434827
Y 24= 17.1730 V= 1. 20832 MX= 0. 438983
vy 25= 18. 0767 V= 1. 29653 MX= 0. 433030
WING POSITION CROSS SECTION MEMBER Y 4 DIRECY STRESS
239 1 9. 320000E-02 -0. 243000 -240. 300
23 2 -2. 380000E-0O2 -0. 243000 428. 706
29 3 1. 190000E-02 -2. 3860000E-02 -127. 203
23 4 0. 238000 -0. 837000 -60. 9462
LIFT AND DRAG DISTRIBUTION ALONG WING
STATION cL CD ANGLE
1 0. 136334 3. SOB6F0E-02 1. 24344
2 0. 2614361 3. 320923E-02 2. 38427
3 0.371433 3. 342226E-02 3. 38709
4 0. 463678 3. 566372E-02 4. 24631
3 0. 343074 3. 59093 3E-02 4. 97032
é 0.611213 3. 614341E-02 3. 37363
7 0. 663903 3. 635719€E-02 6. 07236
8 0. 710939 3. 634697E-02 &. 48302
? 0. 747744 3. 671221E-02 6. 82047
10 0. 778340 3. 685420E-02 7. 09763
11 0. 803328 3. &97316E-02 7. 32330
12 0. 823902 3. 707763E-02 7. 31310
13 0. 840872 3. 716410E-02 7. 66786
14 0. 834899 3. 723690E-02 7.79977
13 0. 864310 3. 729808E-02 7. 20166
16 0.876128 3. 734938E-02 7. 98938
17 0. 884094 3. 739230E-02 8. 06201
18 0. 890672 3. 742803E-02 8. 12201
19 0. 896081 3. 74376 1E-02 8. 17133
20 0. 200487 3. 748184E-02 8. 211350
21 0. 204022 3. 730136E-02 8. 24374
=2 0. 206789 3. 791670E-02 8. 26897
23 0. 208867 3. 732823E-02 8. 28792
24 0. 910313 3. 733629E-02 8. 30110
29 0.911163 3. 794104E-02 8. 30887
26 0.911444 3. 734261E-02 8. 31144
27 0.911163 3. 794104E-02 8. 30887
28 0.910313 3. 733629E-02 8. 30110
29 0. 908867 3. 792823E-02 8. 28792
30 0. 2046789 3. 731670E-02 8. 26897
31 0. 204022 3. 730136E-02 8. 24374
32 0. 200488 3. 748184E-02 8. 21151
33 0. 896083 3. 743762E-02 8.17133
34 0. B90673 3. 742804E-02 8. 12202



35 0. 884093 3. 739230E-02 8. 06202
36 0.876129 3. 734939E-02 7. 98939
37 0. 866312 3. 729808E-02 7. 90167
38 0. 834901 3. 723469 1E-02 7. 79379
a9 0. 840874 3. 71641 1E-02 7. 66788
40 0. 823903 3. 707764E-02 7. 91312
41 0. 803331 3. 6973918E-02 7. 32393
42 0. 778344 3. 683421E-02 7. 09768
43 0. 747249 3. 671223E-02 6. 82031
44 0. 710946 3. 634700E-02 6. 48308
43 0. 6463913 3. 639722E-02 6. 07244
44 0. 611224 3. 614343E-02 9. 97372
47 0. 345087 3. 990938E-02 4. 27064
48 0. 463693 3. 366377E-02 4. 24666
49 0. 371433 3. 542230E-02 3. 38727
30 0. 261484 3. 520927E-02 2. 38448
Sl 0. 136382 3. 509693E-02 1. 24369
32 3. 006203E-03 3. S00000E-02 3. 003283E-04

£ 36 35 36 36 3 36 36 3 3 95 3 36 96 3 I35 36 38 3 36 3 3 36 3 3 I I3 I b I3 WA I 233 3 2 N

VELOCITY = 60. 0000 £¢/s ANGLE = 12. 0000
THE TOTAL LIFT PRODUCED_IS 58. 1417 (lbs)
THE TOTAL DRAG IS 2. 28740 (lbs)
'Y 1= 0. 162256 VZ= -3. 249162E-02MX= 8. 677363E~-02
Y 2= 0. 503423 Vi= -4 . F47683E-02MX= 0. 132371
vy 3= 1. 00314 V= -4, 383711E-02MX= 0. 199333
vY = 1. 63737 Vi= -1. 94237 6E-02MX= 0. 229340
Y 3= 2. 38011 Vi= 2. 978240E-02MX= 0. 244909
Y = 3. 21418 vi= 0. 100476 MX= 0. 248224
vy 7= 4. 12330 VZ= 0. 190632 MX= 0. 241248
vy 8= S. 09391 VZ= 0. 298039 MX= 0. 223686
Y 9= 6. 11484 V= 0. 420363 MY = 0. 202993
Y 10= 7.17707 Vi= 0. 393302 MX= 0. 1743846
/Y 11= 8. 27311 Vi= 0. 701541 MX= 0. 140880
vy 12= 9. 39699 Vi= 0. 836811 MX= 0. 103314
A4 13= 10. 5438 VZ= 1. 01987 MX= 6. 237894E-02
Y 14= 11. 7093 V= 1. 18948 MX= 1. 8B64492E-02
Y 13= 12. 8910 VZ= 1. 36460 MX= -2. 740839E-02
vY 16= 14. 0833 V= 1. 34433 MX = ~7. 539360E-02
vy 17= 15. 2904 V= 1. 72792 MX= -0. 124978
Y 18= 16. 3043 Vi= 1. 91471 MX = -0. 173883
Y 19= 17. 7234 Vi= 2. 10413 M= -0. 227870
Y 20= 18. 9324 Vi= 2. 29370 MX= -0. 280733
vy 21i= 20. 1839 Vi= 2. 48898 MX= -0. 3342926
vy 22= 21. 4191 Vi= 2. 68398 MY = -0. 388393
Y 23= 22. 45468 Vi= 2. 87913 MX= -0. 442880
Y 24= 23. 8962 VZ= 3. 07332 MY= -0. 497621
vY 25= 25. 1364 V= 3. 27181 MX= -0. 352488
WING POSITION CROSS mMOAHOZ Zmzwmz Y Z DIRECT STRESS
239 S20000E-02 -0. 245000 -343. 374
23 n IM 380000E-0R -0. 245000 609. 030
25 3 190000E-02 -2. 380000E-02 -186. 760
23 4 o.numooo -0. 857000 -81. 0994
LIFT AND DRAG DISTRIBUTION ALONG WING
STATION cL cD ANGLE
1 0. 181803 3. 510114E-02 1. 65791
2 0. 348613 3. 537197E-02 3. 17903
3 0. 499243 3. 5730466E-02 4. 51613
4 0. 620904 3. 6179946E-02 3. 66201
o 0. 726766 3. 661662E-02 6. 62736
) 0. 814952 3. 70327 4E-02 7. 431351
7 0. 887872 3. 741279E-02 8. 09649
8 0. 947918 3. 77901 7E-02 8. 64403
? 0. 997258 3. BO4A392E~-02 ?. 09399
10 1. 03779 3. B29636E-02 9. 46333
11 1.07110 3. 851140E-02 9. 76733
12 1. 09833 3. 849333E-02 10. 0175
13 1. 12116 3. 884728E-02 10, 2238
14 1. 13986 3. 897671E-02 10. 3944
13 1. 19333 3. 90854 7E-02 10. 9383
16 1. 16817 3. 917669E-02 10. 6323
17 1. 17879 3. 725297E-02 10. 7493
18 1.18737 3. 931631E~-02 10. 8294
19 1. 19478 3. 936909E-02 10. 8991
20 1. 20063 3. 94121 6E-02 10. 9487
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APPENDIX 10.2




Cl

8.25

0.20

8.15

.10

6.85

a.ae

FIGURE 10AZ2.1
CL FOR TEST WING

Illllllllllll]lllllllll

POSITION FROM CENTERLINE [ft]




FIGURE 10A2.2

k10~ CD FOR TEST WING
8.3515
0.35180
3 0.3505
8.3500 I—
pagos L L o L L 1w 1
-8 -6 -4 -2 e 2

POSITION FROM CENTERLINE [ft]



Uy [lbs]

30

ce

10

FIGURE 10A2.3
ALPHA=2 deg.
STRESS RESULTANTS Uy

V=100 ft/s

v=50 ft/s

llllllllllllllllllllllllllllllllll

1 2 3 4 S 6

POSITION FROM CENTERLINE [ft]




Uz [lbsl

FIGURE 10A2.4

ALPHA=2 deg.
STRESS RESULTANTS Uz

IlllilllllllllllllllllllllllIlllll

%] 1 =4 3 4 S 6

POSITION FROM CENTERLINE (ft]



Mx [ft-lbsl

20

15

18

FIGURE 10A2.5
ALPHA=2 deg.
STRESS RESULTANT Mx

=50 ftre— —
RSN NE EEA i T D s e e
1 2 3 4 S5 6

POSITION FROM CENTERLINE L[ft]




My [ft-lbs]

2e

15

10

FIGURE 10A2.6

ATLPHA=2 deg.

STRESS RESULTANT My

““*\\\\\

~

V=100 ft/s

V=50
Illlllllll

1

2 3 4 S

POSITION FROM CENTERLINE C[ft]




Mz [ft-lbs]

100

80

60

49

ce

FIGURE 1CAZ2.7

ALPHA=2 deg.

STRESS RESULTANT Mz

| I |

v=50 ft/s

|ll|l|llll||llllllllllllllllll

1 (=4 3 4 S 6

POSITION FROM CENTERLINE [ft]

7



(9}

1.25

1.00

8.73

8.58

8.25

6.80

FIGURE 10A2.8

V=60 ft/s
CL FOR TEST WING

Illllllllllllllllllllll

ALPHA=12 deg.

TPHA=9 deg.

ALPHA=6 deg.

ALPHA=3 deg.

POSITION FROM CENTERLINE [ft]




Cd

0.840

8.839

8.0838

8.837

8.836

8.835

FIGURE 10A2.9

V=60 ft/s
CD FOR TEST WING

Illlllllll‘llllllll'llll

ALPHA=12 deg.

ALPHA=9 deg.

ATTHA=6 deg.

ALPHA=K deg,

i 1 l ] l | I |

|
0

-4 -2 %) e

POSITION FROM CENTERLINE [ft]




Uy [lbsl

FIGURE 10A2.10

v=60 ft/s

STRESS RESULTANTS Vy

30

A=12 deg.
28

10

ALPHA=3 deg.

|l|l||lll‘lllllllllllllllllllllll

%) 1 e 3 4 ) 6

POSITION FROM CENTERLINE C[ft]



Uz [lbsl

FIGURE 10A2.11

V=60 ft/s
STRESS RESULTANTS Uz

||l|||l|||l|l|ll|ll|ll|l

lg.llllll|llllllllllll

llllll

o
[y

2 3 4 S

POSITION FROM CENTERLINE [ft]

6




Mx [ft—-1bs]

FIGURE 10A2.12

V=60 ft/s

STRESS RESULTANT Mx

S |

ALTTA-Y deg.

=12 deg.

llllllllllllllIIIIlI'IIlIIllll

1 = 3 4 S )

POSITION FROM CENTERLINE [ft]




My [ft-lbs]

5.0

2.5

6.0

-16.0

FIGURE 10A2.13

V=60 ft/s
STRESS RESULTANT My

Illlrllll[lllllllllllllllllll

1111

ALPlA=6 deg.

llllllllllllllIIllllIlllellll

®

1

e 3 4 S

POSITION FROM CENTERLINE [ft]

6




Mz [ft-1bs]

80

60

40

co

FIGURE 10A2.14

V=60 ft/s

STRESS RESULTANT Mz

POSITION FROM CENTERLINE [ft1

~  AMPHA=12 deg.
ALPHA=3 deg.
pa s bv v e v ey s by s s by s e vy
8 1 2 3 4 S 6 7



HAPTER 11

————————————————————

AERODYNAMIC INTERFERENCE




INTERFERENCE

A requirement of this design is valid interpretation of collected
data. Thus it is necessary to understand the flow seen by the test section
and to ensure that the test section is out of the boundary layer.

The fixed parameters were density, viscosity, and flow condition
(that is, turbulent). The horizontal distance varied from 1 to 3 ft, the
freestream velocity from 50 to 160 ft/s, and the vertical distance from
zero (at the fuselage surface) to infinity. The density and viscosity could
have been varied with altitude if desired, but sea-level properties were
used.

It was determined that the test section will be affected most
strongly by the boundary layer over the fuselage surface. Obviously, the
test section must never be in the boundary layer. From a theoretical
approach, the approximate (two-dimensional, flat plate) height of the
turbulent boundary layer was not difficult to find: d = 0.37 * x / Rey0-2
where Rey = rn x/ m (see Appendix 11). The resulting Reynold's number
was a local property (Rey), and would not fall within the 4E4->1E6 Re
range based on wing root chord. Therefore, the test section would safely
see Re rather than the Rey seen by the boundary layer directly below the
test section.

Calculation of d requires knowing whether the flow is turbulent or
laminar. Although the plane will be as clean as possible, the flow will
still be turbulent. The Delta Monster will see its largest boundary layer, &
= 0.85 in, at the rear of the fuselage (3 feet) and freestream velocity of 50
ft/s (see Figure 11.1).

For completeness, a temperature boundary layer also exists, not
coincident with the velocity boundary layer. According to White (p. 325),
the assumption of incompressibility removes any interdependence of
velocity and temperature. Note that there will also be extremely thin
boundary layers on the upper and lower surfaces of the test section. In
addition, the tripod supports will disturb the flow.

The top surface of the fuselage section is flat forward of and
underneath the test section, so flow acceleration will be minimal
(boundary layer growth slows as flow moves aft on a flat surface).

11-1
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Consideration was given to a wide fuselage to maximize flow consistency,
possibly even attaching a plate to the top of the fuselage to widen and
lengthen the fuselage section below the deita wing. Two alternate, but
related ideas were either to instrument the top surface of the fuselage or
to mount a wake rake vertically from the fuselage when the test section
is not present. The proposed Delta Monster uses this wake rake. The goal
is to understand the flow both with and without the delta wing. The
fuselage was designed with serious consideration given to the test
section. Notably, the fuselage will not be lifting while the system is
gathering data.

Because the delta wing was above the fuselage while the wing was
below, much of the lift distribution and downwash was blocked. The wake
rake was necessary to show flow behavior, since there was no reliable
three-dimensional flow prediction method.

Serious prediction problems arise out of the three-dimensional flow
agitated by the wing / fuselage combination. The result is "wedge shaped
separations over the top of the wing" (Stokely, p. 78) and fuselage, near
the wing root. Also, a strong field of downwash exists behind the wing,
with a similar upwash field ahead of the wing.

The relationship between boundary layer thickness, location, and
Reynold's number is the same whether the surface is flat, inclined, or
curved -- the proportionality constant, however, is different (Schlichting,
pp. 111-112). Use of 0.37 as the proportionality constant should yield
results very close to reality, since X and Rey are at least one order of
magnitude larger than the constant.

A serious control discontinuity occurs when the test section moves
into or out of separated flow, notably on takeoff or landing. The test
section is effectively stalled when in the separated flow, but will lift and
drag when outside this region. Transition may be difficult, as the test
section may want to porpoise in and out of the separated zone. The test
section is located where its lift and drag vectors oppose each other when
added into the pitching moment.
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DELTA WING

Since the purpose of this vehicle is to compliment wind tunnel tests
it was decided that the vehicle should be designed such that it can
accommodate a wide range of test wings for the given flight regime. From
the work done in stability it was found that testing many different wings
was a feasible option, thus giving the RPV concept some validity.

The goal of obtaining in-flight data on the delta wing is going to be
accomplished through the use of pressure ports on the top surface of the
wing. Each test wing is expected to contain approximately 100 pressure
taps. These taps will be spaced differently on each half of the wing to
allow for pressure measurement at a large number of data points (see
Figure 12.1). This also serves to reduce the total number of channels
required in the data acquisition system.

Another conclusion concerning instrumentation of the delta wing
was that it needs only to be instrumented on the top surface. To obtain
lower surface pressure readings the wing can be flipped over and the tests
performed again. This too serves to allow for the inclusion of a large
number of data points without putting a high demand on the data
acquisition system.

One major concern in dealing with a flying test-bed is determining
possible flow field interference from the fuselage or other aircraft
components. In order to determine the existence and quantify such
interference it will be necessary to make trial flights without the test
wing mounted on the aircraft. For this reason it is essential that the
aircraft be stable both with and without the delta wing.

Because the delta wing and its associated flows are still a
developing topic it would be beneficial to incorporate some form of flow
visualization system on the test vehicle. Because of difficulties
associated with in-flight smoke visualization systems an alternate
system is suggested. Although no work has been done in this area a
system such as dyed monofilament fishing line coupled with a strobe light
and operated at night is a possible solution.
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CHAPTER 13
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MANUFACTURE

———

Manufacture of the proposed RPV is of major concern because its
effectiveness could determine the practicality of the concept. Small-
scale production could be accomplished with the proper equipment and a
somewhat substantial expenditure of time. Fabrication in this manner
would entail the development of templates and patterns for all phases of
construction. The actual vehicle couid then be constructed by hand -
fabricating each component of the aircraft. Additional time must be spent
assembling these components into the complete structure. Although this
method assures the high quality of the finished product it is very time
consuming, hence very costly.

Perhaps a more viable option for producing the aircraft would be to
utilize current full-scale, automated production systems. This means
that the aircraft components would all be machine fabricated (die-cut)
and marketed as a ready-to-assemble kit. This has the advantage of
reducing the overall production cost (assuming there would be a sufficient
market for the vehicle) while boosting production rate significantly. This
is also an attractive proposition from the consumer's point of view
because it eliminates the time requirements of fabricating an entire
vehicle.

An even more desirable option for the consumer would be to have the
vehicle furnished completely assembled and ready to fly. This would
eliminate all construction time and cost liabilities and, if inexpensive
enough, would provide a distinct advantage over the previous options.
Producing such a vehicle would require the expansion of the automation
system to include operations to align and bond the structural components.
It was thought that such a system might not be cost effective and thus
from a production perspective might not be a feasible task.
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SYSTEM SAFETY CONSIDERATIONS

The proposed Delta Monster is very safety conscious, with four main
areas of concern. First, the structural design of the aircraft must be
sound so that it does not come apart, especially during the catapault
launch. Second, the plane must be launched in a large enough area in case
it goes out of control. Third, weather conditions must be very good during
flight. And fourth, a pilot must be standing by to take manual control of
the design if there is a malfunction in the preprogrammed system flying
the design.

The Delta Monster was designed to handle 2g loads and will not be
subjected to greater loads. This should ensure the craft will not break,
resulting in loss of time and money and debris hazard. The most critical
structural envelope is launch, with ground impact during retrieval of
secondary consideration. Breakage on impact will not pose a serious
physical hazard. Since the design will be able to handle launch and
retrieval the rest of the flight will not be a problem, as the flight mission
is data collection, which is accomplished during steady level flight in
good weather conditions.

The plane will be launched only away from people. Thus, during the
launch phase, if the plane cannot be controlled to avoid crashing, people
will not be injured.

Weather conditions must be very good for flight to take place. Valid
data collection requires good, constant, known conditions. Consequently,
little consideration was given to gust loads. Gusts would invalidate the
data. Also, the plane must be kept in visual range during the entire flight
which requires good weather.

During data collection, the proposed Delta Monster will be controlled
by a computer. In the event that this system fails, the pilot will be able
to override the computer and resume manual control of the aircraft. This
system, therefore, allows for the acquisition of aerodynamic data using a
remotely piloted vehicle without the need for concern over personal
safety.
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PRODUCTION PLANS AND COST ANALYSIS

——————

The design of this RPV is of little use unless it can be constructed
and operated as prescribed. A primary concern in the production of this
aircraft was the overall cost. It was necessary that the RPV be designed
such that the data obtained was of the same quality as that obtained in
wind tunnel tests and the cost associated with the RPV comparable to
that of wind tunnel testing. Hence a breakdown of the aircraft's cost was
deemed necessary. The cost breakdown was as follows:

1. Structural MALEHAIS. ........coveerrerrere it $200
2. Propulsion system
Y 11 111 OSSR U $100
D. DUCEEA FAN..o.eceeiecicr ettt st $150
3. Data Acquisition System
a. 100 pressure transducers (@ $100 each)...ccceeeeviiriiienniennn $10,000
b. 2inclinometers (@ $250 €aCh)........ccccooimmimieiiieeee $500
c. Signal Processing SYStem.........cooomiirimnnssn s $600

1 RCT-3 transmitter

1 RCRI-1C receiver

1 RTEI encoder

1 RTDI decoder

1 RTI1 telemetry interface
d. 10 Tattletale Model 5

data acquisition systems (@ $325 each)...................... $3,250
©. 120 PraSSUIe tUDBS.........covuvueeereiiiissisms s $10
£ 1 YAWINGICALON . c..co.viiecteiiees it $50
g. 1 heading indiCALON.........ocimiiminisinecr s $400

TOTAL $15,260
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SOCIAL & ENVIRONMENTAL IMPACT

The use of the remotely piloted vehicle as a test bed for data
acquisition presents a number of environmental and social challenges. All
of these can be met through creative planning and regulation. To avoid
crashing into homes, commercial airliners, and adversely affecting radio
and television communications, special zones for testing these vehicles
should be established. The zones should lie outside of commercial
aviation routes and should be placed on non-populated and non-residential
land. In addition, the zones should be established on land that will permit
sighting of the vehicle through all phases of the flight. Forested areas,
especially those with dry seasons, are to be avoided. Parts of the ocean
and remote lakes are preferred.

In the short run, the use of remotely piloted vehicles will most
likely be confined to a relatively small number of businesses and research
facilities. The cumulative noise and pollution will have a relatively small
impact on the environment. Because this concept accelerates the rate of
research, it will ideally maximize existing technologies and minimize
their larger effects on the environment. In practice, however, there is
very little to prevent the abuse of this research or its extension to high
altitude flight. For this reason, remotely piloted vehicles for the
specific purpose of data acquisition should be licensed. All vehicles
beyond a certain weight , with a particularly noisy or powerful propulsion
system, or with telemetry beyond a certain power level should require a
permit to be flown and must be flown in the special zones. Extension to
flight beyond line of sight should not be granted in these zones, unless
adequate means to survey the flight of the vehicle can be established.
Although primarily designed for low level altitude tests, the Delta
Monster has the capability of achieving much higher altitudes and falls
within this category.

In the long term, the use of remotely piloted vehicles for data
acquisition will increase precision technology in the construction of these
craft. These technologies will permeate the toy industry and educational
system, increasing the problem of regulation while also increasing the
general population's knowledge of flight and aerodynamics. Because the
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skys and airways are continually being carved up as the population
increases, special testing zones must eventually subordinate themselves
to the demands of travel and communication. A small number of
permanent zones might therefore be established at the national level.
Finally, the number of unidentified flying objects will remain constant as
the education of the general population increases with the increase of
flying objects.
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TECHNOLOGY DEMONSTRATOR

S NI A s e Y —————

The technology demonstrator was constructed primarily as a scaled
model to test the feasibility of the basic aerodynamic configuration. This
scale was based on the desire to have the technology demonstrator wing
span equal to one half of the actual design wing span. The ability of
certain design decisions to produce a stable, controllable environment in
which data acquisition is meaningful, was of critical and immediate
importance. The actual construction of the demonstrator provided
insights into the structural integrity of the design, and in the case of the
horizontal tailplane, exposed problems that might arise during the
construction of the actual RPV.  Launch was to be achieved by a high
speed hand launch to avoid the low Reynold's numbers and stall associated
with the scale model. The flight test path was chosen to maximize
endurance during the cruise phase.

The critical differences between the actual RPV and the
demonstrator are the different power plants and weights. The Reynold's
number of the scale model was not directly matched with the RPV design
because the velocity and chord combinations produced flight conditions
not able to be achieved by the Astro-15 propulsion unit. The weight was
specifically reduced from the 28.6 Ibs of the RPV design to 5 Ibs to meet
the capabilities of the Astro-15.

The scaling to the scale model at a disproportionate weight and for
far lower Reynold's numbers necessitated a change in the selection of the
airfoil. In choosing the airfoil, the wing chord, and corresponding aspect
ratio, a tradeoff between approximating the aerodynamic configuration of
the RPV and producing a technology demonstrator with enough lift and low
enough stall velocity to get airborne surfaced.

Thus, the airfoil selected was the Selig 2031. In switching to a thin
laminar airfoil, the Clmax was increased for the chosen Reynold's number.
With this -airfoil, the chord was not reduced to the 6 inch proportionate
length because it was feared that it would not produce enough lift at such
a low Reynold's number (a situation not present with the RPV and its high
powered turbulent trip design). A compromise between the chord length
and aspect ratio was reached at a chord of 10 inches and aspect ratio of
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8.2. Switching from a high to moderate aspect ratio increased the induced
drag by 40%, increased the stall velocity, and lowered the lift curve slope,
while still maintaining a comparable Cimax!. The increased sensitivity to
pitch disturbances introduced with the thinner Selig airfoil was
compensated for by this decrease in aspect ratio. Concurrently, the
resulting wing area of 6 ft2 produced a stall speed of 28.8 ft/sec, one of
the limits of acceptable launch velocities.

The decreased control in roll and increased induced drag produced
offects that necessitated changes to the control configuration
implemented by larger vertical tailplanes. The ailerons were discarded in
the design of the RPV, despite the loss in roll control, to keep the design
structurally simple. The low wing design, twin boom, tail assembly, and
wing dihedral were all incorporated into the technology demonstrator
after these initial compensations were made. The fuselage was built to
approximate that of the RPV within the existing construction expertise.

Analysis of the existing Astro-15 power plant for a variety of
propellers set the climb velocity at 39 ft/sec for maximum performance
and minimum power expended. After the initial hand launch, in which it
is hoped that the stall velocity can be achieved through swift and nimble
feet, the 12 in. diameter propeller will accelerate the demonstrator to an
initial obstacle clearing velocity of 32 ft/sec. After the first 50 vertical
feet are cleared, the motor speed will be increased to 6200 RPM and a
corresponding velocity of 39 f/sec to initiate the climb to 500 ft. In this
maneuver, 0.18 amp-hrs will be expended. At cruise altitude, the RPM will
be increased to 8243 to conserve power and the velocity will be decreased
to 34 ft/'sec. A series of 300 ft by 500 ft elliptical horizontal loops will
be initiated, while the controls are tested and evaluated in their ability to
maintain fixed, level flight. After 8 minutes of flight the proposed Delta
Monster will enter a powerless glide profile with 10% reserve power. The
glide will consist of series of slow gradual turns to dissipate energy.
Finally, the demonstrator will be brought in at a moderate angle of
approach and belly landed into soft grass. The folding propellor, which
was modeled as the A12-6 for purposes of test calculations, would remain
intact. .

Flight test of the technology demonstrator was unsuccessful and
furthermore proved inconclusive. Upon becoming airborne the RPV leveled
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off and then initiated an extremely steep dive from an altitude of
approximately 6 feet. It was speculated that this dive was a result of
possible radio interference or inherent aerodynamic characteristics which
could not be accounted for in the preliminary analysis.
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